We report the first results of a high-redshift (
We present findings of the detection of Magnesium II (Mg
- NSF-PAR ID:
- 10440291
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 166
- Issue:
- 3
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 99
- Size(s):
- Article No. 99
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 <z < 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data andJ -band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤z < 6.6, down to 21.5 magnitude (AB) in thez band, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified atz ≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% atz > 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Lyα absorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars atz ∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper. -
ABSTRACT Intervening metal absorption lines in the spectra of z ≳ 6 quasars are fundamental probes of the ionization state and chemical composition of circumgalactic and intergalactic gas near the end of the reionization epoch. Large absorber samples are required to robustly measure typical absorber properties and to refine models of the synthesis, transport, and ionization of metals in the early Universe. The Ultimate XSHOOTER legacy survey of quasars at z ∼ 5.8–6.6 (XQR-30) has obtained high signal-to-noise spectra of 30 luminous quasars, nearly quadrupling the existing sample of 12 high quality z ∼ 6 quasar spectra. We use this unprecedented sample to construct a catalogue of 778 systems showing absorption in one or more of Mg ii (360 systems), Fe ii (184), C ii (46), C iv (479), Si iv (127), and N v (13) which span 2 ≲ z ≲ 6.5. This catalogue significantly expands on existing samples of z ≳ 5 absorbers, especially for C iv and Si iv which are important probes of the ionizing photon background at high redshift. The sample is 50 per cent (90 per cent) complete for rest-frame equivalent widths W ≳ 0.03 Å (0.09 Å). We publicly release the absorber catalogue along with completeness statistics and a python script to compute the absorption search path for different ions and redshift ranges. This data set is a key legacy resource for studies of enriched gas from the era of galaxy assembly to cosmic noon, and paves the way for even higher redshift studies with JWST and 30 m-class telescopes.
-
Abstract The launch of JWST opens a new window for studying the connection between metal-line absorbers and galaxies at the end of the Epoch of Reionization. Previous studies have detected absorber–galaxy pairs in limited quantities through ground-based observations. To enhance our understanding of the relationship between absorbers and their host galaxies at
z > 5, we utilized the NIRCam wide-field slitless spectroscopy to search for absorber-associated galaxies by detecting their rest-frame optical emission lines (e.g., [OIII ] + Hβ ). We report the discovery of a Mgii -associated galaxy atz = 5.428 using data from the JWST ASPIRE program. The Mgii absorber is detected on the spectrum of quasar J0305–3150 with a rest-frame equivalent width of 0.74 Å. The associated galaxy has an [OIII ] luminosity of 1042.5erg s−1with an impact parameter of 24.9 pkpc. The joint Hubble Space Telescope–JWST spectral energy distribution (SED) implies a stellar mass and star formation rate ofM *≈ 108.8M ⊙, star-formation rate ≈ 10M ⊙yr−1. Its [OIII ] equivalent width and stellar mass are typical of [OIII ] emitters at this redshift. Furthermore, connecting the outflow starting time to the SED-derived stellar age, the outflow velocity of this galaxy is ∼300 km s−1, consistent with theoretical expectations. We identified six additional [OIII ] emitters with impact parameters of up to ∼300 pkpc at similar redshifts (∣dv ∣ < 1000 km s−1). The observed number is consistent with that in cosmological simulations. This pilot study suggests that systematically investigating the absorber–galaxy connection within the ASPIRE program will provide insights into the metal-enrichment history in the early Universe. -
Abstract The most reliable single-epoch supermassive black hole mass (
M BH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβ λ 4861 line. Unfortunately, this line is redshifted out of the optical band atz ≈ 1, leavingM BHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civ λ 1549 or Mgii λ 2800, which contain intrinsic challenges when measuring, resulting in uncertainM BHestimates. In this work, we aim at correctingM BHestimates derived from the Civ and Mgii emission lines based on estimates derived from the Hβ emission line. We find that employing the equivalent width of Civ in derivingM BHestimates based on Mgii and Civ provides values that are closest to those obtained from Hβ . We also provide prescriptions to estimateM BHvalues when only Civ , only Mgii , and both Civ and Mgii are measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedM BHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofM BHgiven a much larger sample of quasars at 3.20 ≲z ≲ 3.50, where both Mgii and Hβ can be measured in the same near-infrared spectrum. -
Abstract We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Ca
ii λλ 3934, 3969 and Nai λλ 5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z < 0.20 with stellar masses 7.4 ≤ logM */M ⊙≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R ⊥< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN (Caii ) > 1012.5cm−2(N (Nai ) > 1012.0cm−2) occur with an incidencef C(Caii ) = 0.63+0.10−0.11(f C(Nai ) = 0.57+0.10−0.11). We find no evidence for a dependence off Cor the rest-frame equivalent widthsW r (Caii K) orW r (Nai 5891) onR ⊥orM *. Instead,W r (Caii K) is correlated with local SFR at >3σ significance, suggesting that Caii traces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv 90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR ⊥> 5 kpc. Finally, we assess the relationship between dust reddening andW r (Caii K) (W r (Nai 5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE (B −V)-W r relations at >3σ significance.