skip to main content


Title: Electrical and Structural Analysis of β ‐Ga 2 O 3 /GaN Wafer‐Bonded Heterojunctions with a ZnO Interlayer
Abstract

Wafer bonding ofβ‐Ga2O3and N‐polar GaN single crystal substrates is demonstrated by adding ZnO as a “glue” interlayer. The wafers are fully bonded such that Newton rings are not observed. Temperature‐dependent current‐voltage (IV) measurements are conducted on the as‐bonded Ga2O3/ZnO/N‐polar GaN test structure and after annealing at 600 °C and 1100 °C. The impact of post‐annealing temperature on the electrical and structural characteristics of the bonded samples is investigated. A consistently ohmic‐like characteristic is obtained by annealing the bonded wafers at 1100 °C in N2,which is in part due to crystallization of ZnO and diffusion of Ga into ZnO which makes it n‐type doped. The wafer bonding ofβ‐Ga2O3and GaN achieved in this work is promising to combine the material merits of both GaN and Ga2O3targeting breakthrough high‐frequency and high‐power device performances.

 
more » « less
NSF-PAR ID:
10440301
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
9
Issue:
8
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct wafer bonding of β-Ga2O3and N-polar GaN at a low temperature was achieved by acid treatment and atmospheric plasma activation. The β-Ga2O3/GaN surfaces were atomically bonded without any loss in crystalline quality at the interface. The impact of post-annealing temperature on the quality of bonding interfaces was investigated. Post-annealing at temperatures higher than 700 °C increases the area of voids at bonded interfaces probably due to the difference in the coefficient of thermal expansion. The integration of β-Ga2O3on the GaN substrate achieved in this work is one of the promising approaches to combine the material merits of both GaN and Ga2O3targeting the fabrication of novel GaN/β-Ga2O3high-frequency and high-power electronics as well as optoelectronic devices.

     
    more » « less
  2.  
    more » « less
  3. The band alignment of Atomic Layer Deposited SiO2on (InxGa1−x)2O3at varying indium concentrations is reported before and after annealing at 450 °C and 600 °C to simulate potential processing steps during device fabrication and to determine the thermal stability of MOS structures in high-temperature applications. At all indium concentrations studied, the valence band offsets (VBO) showed a nearly constant decrease as a result of 450 °C annealing. The decrease in VBO was −0.35 eV for (In0.25Ga0.75)2O3, −0.45 eV for (In0.42Ga0.58)2O3, −0.40 eV for (In0.60Ga0.40)2O3, and −0.35 eV (In0.74Ga0.26)2O3for 450 °C annealing. After annealing at 600 °C, the band alignment remained stable, with <0.1 eV changes for all structures examined, compared to the offsets after the 450 °C anneal. The band offset shifts after annealing are likely due to changes in bonding at the heterointerface. Even after annealing up to 600 °C, the band alignment remains type I (nested gap) for all indium compositions of (InxGa1−x)2O3studied.

     
    more » « less
  4. Abstract

    This work reports on the correlation between structure, surface/interface morphology and mechanical properties of pulsed laser deposited (PLD)β-Ga2O3films on transparent quartz substrates. By varying the deposition temperature in the range of 25 °C–700 °C, ∼200 nm thick Ga2O3films with variable microstructure and amorphous-to-nanocrystalline nature were produced onto quartz substrates by PLD. The Ga2O3films deposited at room temperature were amorphous; nanocrystalline Ga2O3films were realized at 700 °C. The interface microstructure is characterized with a typical nano-columnar morphology while the surface exhibits the uniform granular morphology. Corroborating with structure and surface/interface morphology, and with increasing deposition temperature, tunable mechanical properties were seen in PLD Ga2O3films. At 700 °C, for nanocrystalline Ga2O3films, the dense grain packing reduces the elastic modulus Erwhile improving the hardness. The improved crystallinity at elevated temperatures coupled with nanocrystallinity, theβ-phase stabilization is accounted for the observed enhancement in the mechanical properties of PLD Ga2O3films. The structure-morphology-mechanical property correlation in nanocrystalline PLDβ-Ga2O3films deposited on quartz substrates is discussed in detail.

     
    more » « less
  5. Gallium oxide (β-Ga 2 O 3 ) is becoming a popular material for high power electronic devices due to its wide bandgap and ease of processing. In this work, β-Ga 2 O 3 substrates received various annealing treatments before atomic layer deposition of HfO 2 and subsequent fabrication of metal–oxide–semiconductor (MOS) capacitors. Annealing of β-Ga 2 O 3 with forming gas or nitrogen produced degraded capacitance–voltage (C–V) behavior compared to a β-Ga 2 O 3 control sample with no annealing. A sample annealed with pure oxygen had improved C–V characteristics relative to the control sample, with a higher maximum capacitance and smaller flat-band voltage shift, indicating that oxygen annealing improved the C–V behavior. X-ray photoelectron spectroscopy also suggested a reduction in the oxygen vacancy concentration after O 2 annealing at 450 °C, which supports the improved C–V characteristics and indicates that O 2 annealing of β-Ga 2 O 3 may lead to better MOS device performance. 
    more » « less