Mitochondria are major sources of reactive oxygen species (ROS), which play important roles in both physiological and pathological processes. However, the specific contributions of different ROS production and scavenging components in the mitochondria of metabolically active tissues such as heart and kidney cortex and outer medulla (OM) are not well understood. Therefore, the goal of this study was to determine contributions of different ROS production and scavenging components and provide detailed comparisons of mitochondrial respiration, bioenergetics, ROS emission between the heart and kidney cortex and OM using tissues obtained from the same Sprague-Dawley rat under identical conditions and perturbations. Specifically, data were obtained using both NADH-linked substrate pyruvate + malate and FADH2-linked substrate succinate followed by additions of inhibitors of different components of the electron transport chain (ETC) and oxidative phosphorylation (OxPhos) and other ROS production and scavenging systems. Currently, there is limited data available for the mitochondria of kidney cortex and OM, the two major energy-consuming tissues in the body only next to the heart, and scarce quantitative information on the interplay between mitochondrial ROS production and scavenging systems in the three tissues. The findings from this study demonstrate significant differences in mitochondrial respiratory and bioenergetic functions and ROS emission among the three tissues. The results quantify the rates of ROS production from different complexes of the ETC, identify the complexes responsible for variations in mitochondrial membrane depolarization and regulations of ROS production, and quantify the contributions of ROS scavenging enzymes towards overall mitochondrial ROS emission. These findings advance our fundamental knowledge of tissue-specific and substrate-dependent mitochondrial respiratory and bioenergetic functions and ROS emission. This is important given the critical role that excess ROS production, oxidative stress, and mitochondrial dysfunction in the heart and kidney cortex and OM play in the pathogenesis of cardiovascular and renal diseases, including salt-sensitive hypertension. Keywords: Forward and reverse electron transfer; Mitochondrial metabolism; NADPH oxidase; Oxidative stress; ROS emission; ROS production and scavenging; Respiration and bioenergetics.
more »
« less
Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla
Abstract Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis–Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.
more »
« less
- Award ID(s):
- 2153387
- PAR ID:
- 10440317
- Publisher / Repository:
- DOI PREFIX: 10.1152
- Date Published:
- Journal Name:
- Function
- Volume:
- 4
- Issue:
- 5
- ISSN:
- 2633-8823
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Mitochondria are dynamic organelles that undergo fission and fusion. While they are essential for cellular metabolism, the effect of dysregulated mitochondrial dynamics on cellular metabolism is not fully understood. We previously found that transmembrane protein 135 ( Tmem135) plays a role in the regulation of mitochondrial dynamics in mice. Mice homozygous for a Tmem135 mutation ( Tmem135 FUN025/FUN025 ) display accelerated aging and age-related disease pathologies in the retina including the retinal pigment epithelium (RPE). We also generated a transgenic mouse line globally overexpressing the Tmem135 gene ( Tmem135 TG). In several tissues and cells that we studied such as the retina, heart, and fibroblast cells, we observed that the Tmem135 mutation causes elongated mitochondria, while overexpression of Tmem135 results in fragmented mitochondria. To investigate how abnormal mitochondrial dynamics affect metabolic signatures of tissues and cells, we identified metabolic changes in primary RPE cell cultures as well as heart, cerebellum, and hippocampus isolated from Tmem135 FUN025/FUN025 mice (fusion > fission) and Tmem135 TG mice (fusion < fission) using nuclear magnetic resonance spectroscopy. Metabolomics analysis revealed a tissue-dependent response to Tmem135 alterations, whereby significant metabolic changes were observed in the heart of both Tmem135 mutant and TG mice as compared to wild-type, while negligible effects were observed in the cerebellum and hippocampus. We also observed changes in Tmem135 FUN025/FUN025 and Tmem135 TG RPE cells associated with osmosis and glucose and phospholipid metabolism. We observed depletion of NAD + in both Tmem135 FUN025/FUN025 and Tmem135 TG RPE cells, indicating that imbalance in mitochondrial dynamics to both directions lowers the cellular NAD + level. Metabolic changes identified in this study might be associated with imbalanced mitochondrial dynamics in heart tissue and RPE cells which can likely lead to functional abnormalities. Impact statement Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells.more » « less
-
Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the fluorescence lifetime imaging microscopy measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.more » « less
-
ABSTRACT The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health. Translational StatementDue to aging, the efficiency of kidney functions begins to decrease and the risk of kidney diseases may increase, but specific regulators of mitochondrial age-related changes are poorly explained. This study demonstrates the MICOS complex may be a target for mitigating age-related changes in mitochondria. The MICOS complex can be associated with oxidative stress and calcium dysregulation, which also arise in many kidney pathologies. Graphical AbstractKidney aging causes a decline in the MICOS complex, concomitant with metabolic, lipidomic, and mitochondrial structural alterations.more » « less
-
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.more » « less
An official website of the United States government
