skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements with 3D hybrid particle-in-cell code
Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100-μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography.  more » « less
Award ID(s):
1707357
PAR ID:
10440318
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
9
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam. 
    more » « less
  2. null (Ed.)
    Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0   g cm − 3 , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. 
    more » « less
  3. Bremsstrahlung x rays generated in laser-solid interactions can be used as light sources for high-energy-density science. We present electron and x-ray spectra from multidimensional kinetic simulations with varying laser pulse intensity and duration at fixed energy of 200J. A phenomenological model for the transition from superponderomotive to ponderomotive temperatures is described, yielding a temperature scaling that depends on pulse duration and density scale length. The shortest pulses create low-divergence electron beams before self-generated magnetic fields evolve, yielding 1–5−MeV forward-going x rays containing ∼0.5% of the laser energy. 
    more » « less
  4. Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers. 
    more » « less
  5. The interaction of high-intensity lasers with plasma is predicted to produce extreme quasi-static magnetic fields with magnitudes approaching Megatesla levels. In relativistically transparent plasmas, these fields can enhance direct laser acceleration and allow efficient gamma-ray emission by accelerated electrons. However, due to the so-called magnetic suppression effect, the magnetic field can also affect radiating electron trajectories and, thus, reduce the emission probability of the bremsstrahlung. This is the first study to examine the bremsstrahlung suppression mechanism in the context of high-intensity laser–plasma interactions. Our paper describes a new module that integrates the suppression effect into the standard bremsstrahlung module of the EPOCH particle-in-cell code by considering the impact of magnetic fields and extending the analysis to electric fields. We also investigate this suppressing mechanism's effect on the emitting electron's dynamics. Our findings show that this mechanism not only suppresses low-energy emissions but also has an impact on the dynamics of the radiating electrons. 
    more » « less