skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diffusion-assisted molecular beam epitaxy of CuCrO2 thin films
Using molecular beam epitaxy (MBE) to grow multielemental oxides (MEOs) is generally challenging, partly due to difficulty in stoichiometry control. Occasionally, if one of the elements is volatile at the growth temperature, stoichiometry control can be greatly simplified using adsorption-controlled growth mode. Otherwise, stoichiometry control remains one of the main hurdles to achieving high-quality MEO film growths. Here, we report another kind of self-limited growth mode, dubbed diffusion-assisted epitaxy, in which excess species diffuses into the substrate and leads to the desired stoichiometry, in a manner similar to the conventional adsorption-controlled epitaxy. Specifically, we demonstrate that using diffusion-assisted epitaxy, high-quality epitaxial CuCrO2 films can be grown over a wide growth window without precise flux control using MBE.  more » « less
Award ID(s):
2004125
PAR ID:
10440330
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
40
Issue:
6
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The making of BaZrS3thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS3forms in the orthorhombic distorted‐perovskite structure with corner‐sharing ZrS6octahedra. The single‐step MBE process results in films smooth on the atomic scale, with near‐perfect BaZrS3stoichiometry and an atomically sharp interface with the LaAlO3substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self‐assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated‐cube‐on‐cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high‐quality epitaxial thin films, as has been long‐established for other systems including Si‐Ge, III‐Vs, and II‐VIs. The methods demonstrated here also represent a revival of gas‐source chalcogenide MBE. 
    more » « less
  2. We report the epitaxial growth of (010) β-(AlxGa1−x)2O3 using tritertiarybutylaluminum (TTBAl) as an aluminum gas precursor in a hybrid molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an oxide MBE system, using a conventional Al effusion cell can cause difficulties due to the oxidation of the Al source during growth. This often requires breaking the vacuum frequently to reload Al. Our approach utilizes TTBAl, a gaseous Al source, via a h-MBE to circumvent the oxidation issues associated with traditional solid Al sources. We investigated the growth conditions of β-(AlxGa1−x)2O3, varying TTBAl supply and growth temperature. For this purpose, we utilized both elemental Ga and Ga-suboxide as Ga precursors. Controllable and repeatable growth of β-(AlxGa1−x)2O3 with Al compositions ranging from 1% to 25% was achieved. The impurity incorporation and crystal quality of the resulting β-(AlxGa1−x)2O3 films were also studied. Using TTBAl as a gaseous precursor in h-MBE has proven to maintain stable Al supply, enabling the controlled growth of high-quality β-(AlxGa1−x)2O3 films. 
    more » « less
  3. Abstract Transparent oxide thin film transistors (TFTs) are an important ingredient of transparent electronics. Their fabrication at the back‐end‐of‐line (BEOL) opens the door to novel strategies to more closely integrate logic with memory for data‐intensive computing architectures that overcome the scaling challenges of today's integrated circuits. A recently developed variant of molecular‐beam epitaxy (MBE) called suboxide MBE (S‐MBE) is demonstrated to be capable of growing epitaxial In2O3at BEOL temperatures with unmatched crystal quality. The fullwidth at halfmaximum of the rocking curve is 0.015° and, thus, ≈5x narrower than any reports at any temperature to date and limited by the substrate quality. The key to achieving these results is the provision of an In2O beam by S‐MBE, which enables growth in adsorption control and is kinetically favorable. To benchmark this deposition method for TFTs, rudimentary devices were fabricated. 
    more » « less
  4. Hybrid MBE produces epitaxial SrTiO 3 free-standing nanomembranes using remote epitaxy in an adsorption-controlled manner. 
    more » « less
  5. A seemingly simple oxide with a rutile structure, RuO2, has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthesis of RuO2 films, but unfortunately, utilizing atomically controlled deposition techniques, such as molecular beam epitaxy (MBE), has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single crystalline RuO2 films on different substrate orientations using the novel solid-source metal–organic (MO) MBE. This approach circumvents these issues by supplying Ru using a “pre-oxidized” solid MO precursor containing Ru. High-quality epitaxial RuO2 films with a bulk-like room-temperature resistivity of 55 μΩ cm were obtained at a substrate temperature as low as 300 °C. By combining x-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of a novel solid-source metal–organic MBE approach pave the way to the atomic-layer controlled synthesis of complex oxides of “stubborn” metals, which are not only difficult to evaporate but also hard to oxidize. 
    more » « less