We reconstruct the morphology and kinematics of a series of small transients that erupted from the Sun on 2021 April 24 using observations primarily from Parker Solar Probe (PSP). These sequential small coronal mass ejections (CMEs) may be the product of a continuous reconnection at a current sheet, which is a macroscopic example of the more microscopic reconnection activity that has been proposed to accelerate the solar wind more generally. These particular CMEs are of interest because they are the first CMEs to hit PSP and be simultaneously imaged by it, using the Wide-field Imager for Solar Probe (WISPR) instrument. Based on imaging from WISPR and STEREO-A, we identify and model six discrete transients, and determine that it is the second of them (CME2) that first hits PSP, although PSP later more obliquely also encounters the third transient. Signatures of these encounters are seen in the PSP in situ data. Within these data, we identify six candidate magnetic flux ropes (MFRs), all but one of which are associated with the second transient. The five CME2 MFRs have orientations that are roughly consistent with PSP encountering the right-hand sides of roughly E-W oriented MFRs, which are sloping back toward the Sun.
more » « less- NSF-PAR ID:
- 10440360
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 953
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- Article No. 123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5–107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with “switchbacks”. Thus, the PSP findings suggest that large-scale dynamics, either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers), plays a critical role in triggering reconnection onset.more » « less
-
Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Aims. We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter. Methods. We analyse the magnetic field and plasma parameters from the FIELDS and Solar Wind Electrons Alphas and Protons instruments. Results. The three structures analysed all show typical signatures of magnetic reconnection. The ion velocity and magnetic field are first correlated and then anti-correlated at the inbound and outbound edges of the bifurcated current sheets with a central ion flow jet. Most of the reconnection events have a strong guide field and moderate magnetic shear, but one current sheet shows indications of quasi anti-parallel reconnection in conjunction with a magnetic field magnitude decrease by 90%. Conclusions. Given the wealth of intense current sheets observed by PSP, reconnection at switchback boundaries appears to be rare. However, as the switchback boundaries accomodate currents, one can conjecture that the geometry of these boundaries offers favourable conditions for magnetic reconnection to occur. Such a mechanism would thus contribute in reconfiguring the magnetic field of the switchbacks, affecting the dynamics of the solar wind and eventually contributing to the blending of the structures with the regular wind as they propagate away from the Sun.more » « less
-
Abstract The omnipresence of transient fluctuations in the solar wind, such as switchbacks (SBs) and small-scale magnetic flux ropes (SMFRs), have been well observed by the in situ observation of Parker Solar Probe (PSP), yet their sources are not clear. Possible candidates fall into two categories: solar origin and in situ generation in the solar wind. Among the solar-origin scenarios, the small-scale activities (such as ejections and eruptions) in coronal hole (CH) regions, where solar wind originates, are suggested as candidates. Using full-disk extreme ultraviolet images from Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, we identify small-scale ejections in CH regions during PSP Encounters 5, 7, and 8, and study their statistical properties. These ejections belong to two categories: standard jets and blowout jets. With 27,832 ejections identified in 24 days (about 2/3 of them are blowout jets), we updated the expected frequency for PSP to detect their counterparts in the heliospace. The ejections we identified are comparable to the frequency of PSP-detected SMFRs, but they are insufficient to serve as the only producer of SBs or SB patches. Certain smaller events missed by this study, such as jetlets, may fill the gap.
-
Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the SBO-CME is interacting with the heliospheric magnetic field and plasma sheet structures draped about the CME flux rope. We estimate that 18 ± 11% of the CME’s azimuthal magnetic flux has been eroded through magnetic reconnection and that this erosion began after a heliospheric distance of ∼0.35 AU from the Sun was reached. This observational study has important implications for understanding the initiation of SBO-CMEs and their interaction with the heliospheric surroundings.more » « less
-
Abstract The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of “quieter” status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, that is, in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high‐speed stream (HSS) on their way toward Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region preceding the HSS. Analysis of remote‐sensing and in‐situ data supported by heliospheric modeling suggests that CME–HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during “simpler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars.