skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of morphology in defect formation and photo-induced carrier instabilities in amorphous indium oxide
Ab initio molecular dynamics liquid-quench simulations and hybrid density functional calculations are performed to model the effects of room-temperature atomic fluctuations and photo-illumination on the structural and electronic properties of amorphous sub-stoichiometric In2O2.96. A large configurational ensemble is employed to reliably predict the distribution of localized defects as well as their response to the thermal and light activation. The results reveal that the illumination effects on the carrier concentration are greater in amorphous configurations with shorter In–O bond length and reduced polyhedral sharing as compared to the structures with a more uniform morphology. The obtained correlation between the photo-induced carrier density and the reduction in the number of fully coordinated In-atoms implies that metal oxides with a significant fraction of crystalline/amorphous interfaces would show a more pronounced response to illumination. Photo-excitation also produces In–O2–In defects that have not been previously found in sub-stoichiometric amorphous oxides; these defects are responsible for carrier instabilities due to overdoping.  more » « less
Award ID(s):
1729779 1919789
PAR ID:
10440387
Author(s) / Creator(s):
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
26
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With power conversion efficiencies now exceeding 25%, hybrid perovskite solar cells require deeper understanding of defects and processing to further approach the Shockley‐Queisser limit. One approach for processing enhancement and defect reduction involves additive engineering—, e.g., addition of MASCN (MA = methylammonium) and excess PbI2have been shown to modify film grain structure and improve performance. However, the underlying impact of these additives on transport and recombination properties remains to be fully elucidated. In this study, a newly developed carrier‐resolved photo‐Hall (CRPH) characterization technique is used that gives access to both majority and minority carrier properties within the same sample and over a wide range of illumination conditions. CRPH measurements on n‐type MAPbI3films reveal an order of magnitude increase in carrier recombination lifetime and electron density for 5% excess PbI2added to the precursor solution, with little change noted in electron and hole mobility values. Grain size variation (120–2100 nm) and MASCN addition induce no significant change in carrier‐related parameters considered, highlighting the benign nature of the grain boundaries and that excess PbI2must predominantly passivate bulk defects rather than defects situated at grain boundaries. This study offers a unique picture of additive impact on MAPbI3optoelectronic properties as elucidated by the new CRPH approach. 
    more » « less
  2. Abstract Ultrathin 2D metal oxides are a high‐performance class of transparent conducting materials capable of overcoming the traditional limitations of inorganic flexible electronics. The low temperature, thermodynamically favorable synthesis of 2D oxides at liquid metal interfaces offers the potential for printing these materials over large areas at unprecedented speeds with sub‐nanometer scale precision. However, these native oxides are sub‐stoichiometric and highly conductive, so new strategies are needed that can precisely engineer the electrostatics and enhance stability. In this work, the crystalline vs. amorphous phase of 2D oxides is engineered via alloying of ternary In1‐ySnyOxand ultralow deposition temperatures (120–160 °C) are afforded by In‐Sn eutectics. This approach is extended to rapid assembly of nanoscale (3–5 nm per layer) vertical 2D homojunctions with electrostatically favorable grading from high density of states front channels to lower density of states back‐channels. Detailed materials characterization reveals how this platform enhances electron mobility while improving resilience under bias‐stress in metal oxide transistors. Devices based on amorphous 2D oxide homojunctions with high‐k sol‐gel ZrOxdielectrics achieve excellent electron mobility (30 cm2/V·s), steep switching (SS of 100 mV dec−1), Ion/offof 107and 10X reduced bias‐stress shifts, presenting an ideal strategy for high‐performance flexible oxide electronics. 
    more » « less
  3. We report a reversible photo-induced doping effect in two-dimensional (2D) tungsten diselenide (WSe 2 ) field effect transistors on hexagonal boron nitride (h-BN) substrates under low-intensity visible light illumination (∼10 nW μm −2 ). Our experimental results have shown that this reversible doping process is mainly attributed to two types of defects in h-BN substrates. Moreover, the photo-doped WSe 2 transistors can be stable for more than one week in a dark environment and maintain the high on/off ratio (10 8 ) and carrier mobility, since there are no additional impurities involved during the photo-induced doping process to increase the columbic scattering in the conducting channel. These fundamental studies not only provide an accessible strategy to control the charge doping level and then to achieve a writing/erasing process in 2D transistors, but also shed light on the defect states and interfaces in 2D materials. 
    more » « less
  4. A review is given of reported trap states in the bandgaps of different polymorphs of the emerging ultrawide bandgap semiconductor Ga2O3. The commonly observed defect levels span the entire bandgap range in the three stable (β) or meta-stable polymorphs (α and ɛ) and are assigned either to impurities such as Fe or to native defects and their complexes. In the latter case, the defects can occur during crystal growth or by exposure to radiation. Such crystalline defects can adversely affect material properties critical to device operation of transistors and photodetectors, including gain, optical output, threshold voltage by reducing carrier mobility, and effective carrier concentration. The trapping effects lead to degraded device operating speed and are characterized by long recovery transients. There is still significant work to be done to correlate experimental results based on deep level transient spectroscopy and related optical spectroscopy techniques to density functional theory and the dominant impurities present in the various synthesis methods to understand the microscopic nature of defects in Ga2O3
    more » « less
  5. Abstract Oxygen vacancy is the most common type of point defects in functional oxides, and it is known to have profound influence on their properties. This is particularly true for ferroelectric oxides since their interaction with ferroelectric polarization often dictates the ferroelectric responses. Here, we study the influence of the concentration of oxygen vacancies on the stability of ferroelectric domain walls (DWs) in BiFeO3, a material with a relatively narrow bandgap among all perovskite oxides, which enables strong interactions among electronic charge carriers, oxygen vacancies, and ferroelectric domains. It is found that the electronic charge carriers in the absence of oxygen vacancies have essentially no influence on the spatial polarization distribution of the DWs due to their low concentrations. Upon increasing the concentration of oxygen vacancies, charge‐neutral DWs with an originally symmetric polarization distribution symmetric around the center of the wall can develop a strong asymmetry of the polarization field, which is mediated by the electrostatic interaction between polarization and electrons from the ionization of oxygen vacancies. Strongly charged head‐to‐head DWs that are unstable without oxygen vacancies can be energetically stabilized in the off‐stoichiometric BiFeO3−δwithδ∼ 0.02 where ionization of oxygen vacancies provides sufficient free electrons to compensate the bound charge at the wall. Our results delineate the electrostatic coupling of the ionic defects and the associated free electronic charge carriers with the bound charge in the vicinity of neutral and charged DWs in perovskite ferroelectrics. 
    more » « less