skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Quantitative x-ray diffraction analysis of strain and interdiffusion in β-Ga2O3 superlattices of μ -Fe2O3 and β-(AlxGa1−x)2O3

Superlattices composed of either monoclinic μ-Fe2O3 or β-(AlxGa1−x)2O3 with β-Ga2O3 spacers are grown on (010) β-Ga2O3 substrates using plasma-assisted molecular beam epitaxy. High-resolution x-ray diffraction data are quantitatively fit using commercial dynamical x-ray diffraction software (LEPTOS) to obtain layer thicknesses, strain, and compositions. The strain state of β-(AlxGa1−x)2O3 and μ-Fe2O3 superlattices as characterized using reciprocal space maps in the symmetric (020) and asymmetric (420) diffraction conditions indicates coherent growths that are strained to the (010) β-Ga2O3 lattice. β-(AlxGa1−x)2O3 and μ-Fe2O3 superlattices grown at hotter substrate temperatures result in crystal structures with better coherency and reduced defects compared to colder growths. The growth rate of μ-Fe2O3 is ∼2.6 nm/min at Tsub = 700 °C and drops to ∼1.6 nm/min at Tsub = 800 °C due to increased Fe interdiffusion at hotter substrate temperatures. Scanning transmission electron microscopy data of a μ-Fe2O3 superlattice grown at Tsub = 700 °C confirm that there is significant diffusion of Fe atoms into β-Ga2O3 layers.

 
more » « less
NSF-PAR ID:
10440391
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
40
Issue:
6
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrawide bandgap β-(AlxGa1−x)2O3 vertical Schottky barrier diodes on (010) β-Ga2O3 substrates are demonstrated. The β-(AlxGa1−x)2O3 epilayer has an Al composition of 21% and a nominal Si doping of 2 × 1017 cm−3 grown by molecular beam epitaxy. Pt/Ti/Au has been employed as the top Schottky contact, whereas Ti/Au has been utilized as the bottom Ohmic contact. The fabricated devices show excellent rectification with a high on/off ratio of ∼109, a turn-on voltage of 1.5 V, and an on-resistance of 3.4 mΩ cm2. Temperature-dependent forward current-voltage characteristics show effective Schottky barrier height varied from 0.91 to 1.18 eV while the ideality factor from 1.8 to 1.1 with increasing temperatures, which is ascribed to the inhomogeneity of the metal/semiconductor interface. The Schottky barrier height was considered a Gaussian distribution of potential, where the extracted mean barrier height and a standard deviation at zero bias were 1.81 and 0.18 eV, respectively. A comprehensive analysis of the device leakage was performed to identify possible leakage mechanisms by studying temperature-dependent reverse current-voltage characteristics. At reverse bias, due to the large Schottky barrier height, the contributions from thermionic emission and thermionic field emission are negligible. By fitting reverse leakage currents at different temperatures, it was identified that Poole–Frenkel emission and trap-assisted tunneling are the main leakage mechanisms at high- and low-temperature regimes, respectively. Electrons can tunnel through the Schottky barrier assisted by traps at low temperatures, while they can escape these traps at high temperatures and be transported under high electric fields. This work can serve as an important reference for the future development of ultrawide bandgap β-(AlxGa1−x)2O3 power electronics, RF electronics, and ultraviolet photonics.

     
    more » « less
  2. Teherani, Ferechteh H. ; Rogers, David J. (Ed.)
    We demonstrated a metal-organic chemical vapor deposition (MOCVD) of smooth, thick, and monoclinic phase-pure gallium oxide (Ga2O3) on c-plane sapphire using silicon-oxygen bonding (SiOx) as a phase stabilizer. The corundum (α), monoclinic (β), and orthorhombic (ε) phases of Ga2O3 with a bandgap in the 4.4 – 5.1 eV range, are promising materials for power semiconductor devices and deep ultraviolet (UV) solar-blind photodetectors. The MOCVD systems are extensively used for homoepitaxial growth of β-Ga2O3 on (001), (100), (010), and (¯2 01) β-Ga2O3 substrates. These substrates are rare/expensive and have very low thermal conductivity; thus, are not suitable for high-power semiconductor devices. The c-plane sapphire is typically used as a substrate for high-power devices. The β-Ga2O3 grows in the (¯2 01) direction on sapphire. In this direction, the presence of high-density oxygen dangling bonds, frequent stacking faults, twinning, and other phases and planes impede the heteroepitaxy of thick β-Ga2O3. Previously phase stabilizations with SiOx have been reported for tetragonal and monoclinic hafnia. We were able to grow ~580nm thick β-Ga2O3 on sapphire by MOCVD at 750 oC through phase stabilization using silane. The samples grown with silane have a reduction in the surface roughness and resistivity from 10.7 nm to 4.4 nm and from 371.75 Ω.cm to 135.64 Ω.cm, respectively. These samples show a pure-monoclinic phase determined by x-ray diffraction (XRD); have tensile strain determined by Raman strain mapping. These results show that a thick, phase-pure -Ga2O3 can be grown on c-plane sapphire which can be suitable for creating power devices with better thermal management. 
    more » « less
  3. This work demonstrates the advantage of carrying out silicon ion (Si+) implantation at high temperatures for forming controlled heavily doped regions in gallium oxide. Room temperature (RT, 25 °C) and high temperature (HT, 600 °C) Si implants were carried out into MBE grown (010) β-Ga2O3 films to form ∼350 nm deep Si-doped layers with average concentrations up to ∼1.2 × 1020 cm−3. For such high concentrations, the RT sample was too resistive for measurement, but the HT samples had 82.1% Si dopant activation efficiency with a high sheet electron concentration of 3.3 × 1015 cm−2 and an excellent mobility of 92.8 cm2/V·s at room temperature. X-ray diffraction measurements indicate that HT implantation prevents the formation of other Ga2O3 phases and results in reduced structural defects and lattice damage. These results are highly encouraging for achieving ultra-low resistance heavily doped Ga2O3 layers using ion implantation.

     
    more » « less
  4. Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.

     
    more » « less
  5. Halide vapor phase epitaxial (HVPE) Ga2O3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga2O3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga2O3 (nc-β-Ga2O3) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga2O3 on sapphire but failed to detect any β-Ga2O3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga2O3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga2O3/sapphire and nc-Ga2O3/diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV.

     
    more » « less