skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-level RNA editing diversifies the coleoid cephalopod brain proteome
Abstract Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.  more » « less
Award ID(s):
2110074 2220587
PAR ID:
10440396
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Briefings in Functional Genomics
Volume:
22
Issue:
6
ISSN:
2041-2649
Format(s):
Medium: X Size: p. 525-532
Size(s):
p. 525-532
Sponsoring Org:
National Science Foundation
More Like this
  1. The coleoid cephalopods display unusually extensive mRNA recoding by adenosine deamination, yet the underlying mechanisms are not well understood. Because the adenosine deaminases that act on RNA (ADAR) enzymes catalyze this form of RNA editing, the structure and function of the cephalopod orthologs may provide clues. Recent genome sequencing projects have provided blueprints for the full complement of coleoid cephalopod ADARs. Previous results from our laboratory have shown that squid express an ADAR2 homolog, with two splice variants named sqADAR2a and sqADAR2b and that these messages are extensively edited. Based on octopus and squid genomes, transcriptomes, and cDNA cloning, we discovered that two additional ADAR homologs are expressed in coleoids. The first is orthologous to vertebrate ADAR1. Unlike other ADAR1s, however, it contains a novel N-terminal domain of 641 aa that is predicted to be disordered, contains 67 phosphorylation motifs, and has an amino acid composition that is unusually high in serines and basic amino acids. mRNAs encoding sqADAR1 are themselves extensively edited. A third ADAR-like enzyme, sqADAR/D-like, which is not orthologous to any of the vertebrate isoforms, is also present. Messages encoding sqADAR/D-like are not edited. Studies using recombinant sqADARs suggest that only sqADAR1 and sqADAR2 are active adenosine deaminases , both on perfect duplex dsRNA and on a squid potassium channel mRNA substrate known to be edited in vivo . sqADAR/D-like shows no activity on these substrates. Overall, these results reveal some unique features in sqADARs that may contribute to the high-level RNA recoding observed in cephalopods. 
    more » « less
  2. The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A→I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing. 
    more » « less
  3. Xue, Chaoyang (Ed.)
    Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, includingFusarium graminearumandNeurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at −1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages inF.graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms ofFgTAD2andFgTAD3as well as cofactors such asAME1andFIP5that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA. 
    more » « less
  4. Abstract Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a prevalent and conserved RNA modification. While A-to-I RNA editing is essential in mammals, in Caenorhabditis elegans, it is not, making them invaluable for RNA editing research. In C. elegans, ADR-2 is the sole catalytic A-to-I editing enzyme, and ADR-1 is an RNA editing regulator. ADAR localization is well-studied in humans but not well-established in C. elegans. In this study, we examine the cellular and tissue-specific localization of ADR-2. We show that while ADR-2 is present in most cells in the embryo, at later developmental stages, its expression is both tissue- and cell-type-specific. Additionally, both ADARs are mainly in the nucleus. ADR-2 is adjacent to the chromosomes during the cell cycle. We show that the nuclear localization of endogenous ADR-2 depends on ADBP-1, not ADR-1. In adbp-1 mutant worms, ADR-2 is mislocalized, while ADR-1 is not, leading to decreased editing levels and de-novo editing, mostly in exons, suggesting that ADR-2 is also functional in the cytoplasm. Besides, mutated ADBP-1 affects gene expression. Furthermore, we show that ADR-2 targets adenosines with different surrounding nucleotides in exons and introns. Our findings indicate that ADR-2 cellular localization is highly regulated and affects its function. 
    more » « less
  5. Lin, Xiaorong (Ed.)
    ABSTRACT Adenosine-to-inosine (A-to-I) RNA editing independent of adenosine deaminase acting on RNA (ADAR) enzymes was discovered in fungi recently, and shown to be crucial for sexual reproduction. However, the underlying mechanism for editing is unknown. Here, we combine genome-wide comparisons, proof-of-concept experiments, and machine learning to decipher cis -regulatory elements of A-to-I editing in Fusarium graminearum . We identified plenty of RNA primary sequences and secondary structural features that affect editing specificity and efficiency. Although hairpin loop structures contribute importantly to editing, unlike in animals, the primary sequences have more profound influences on editing than secondary structures. Nucleotide preferences at adjacent positions of editing sites are the most important features, especially preferences at the −1 position. Unexpectedly, besides the number of positions with preferred nucleotides, the combination of preferred nucleotides with depleted ones at different positions are also important for editing. Some cis -sequence features have distinct importance for editing specificity and efficiency. Machine learning models built from diverse sequence and secondary structural features can accurately predict genome-wide editing sites but not editing levels, indicating that the cis -regulatory principle of editing efficiency is more complex than that of editing specificity. Nevertheless, our model interpretation provides insights into the quantitative contribution of each feature to the prediction of both editing sites and levels. We found that efficient editing of FG3G34330 transcripts depended on the full-length RNA molecule, suggesting that additional RNA structural elements may also contribute to editing efficiency. Our work uncovers multidimensional cis -regulatory elements important for A-to-I RNA editing in F. graminearum , helping to elucidate the fungal editing mechanism. IMPORTANCE A-to-I RNA editing is a new epigenetic phenomenon that is crucial for sexual reproduction in fungi. Deciphering cis -regulatory elements of A-to-I RNA editing can help us elucidate the editing mechanism and develop a model that accurately predicts RNA editing. In this study, we discovered multiple RNA sequence and secondary structure features important for A-to-I editing in Fusarium graminearum . We also identified the cis -sequence features with distinct importance for editing specificity and efficiency. The potential importance of full-length RNA molecules for editing efficiency is also revealed. This study represents the first comprehensive investigation of the cis -regulatory principles of A-to-I RNA editing in fungi. 
    more » « less