skip to main content


This content will become publicly available on June 1, 2024

Title: Photon propagation in magnetized dense quark matter. A possible solution for the missing pulsar problem.
Abstract In this paper it is reviewed the topological properties and possible astrophysical consequences of a spatially inhomogeneous phase of quark matter, known as the Magnetic Dual Chiral Density Wave (MDCDW) phase, that can exist at intermediate baryon density in the presence of a magnetic field. Going beyond mean-field approximation, it is shown how linearly polarized electromagnetic waves penetrating the MDCDW medium can mix with the phonon fluctuations to give rise to two hybridized modes of propagation called as axion polaritons because of their similarity with certain modes found in condensed matter for topological magnetic insulators. The formation of axion polaritons in the MDCDW core of a neutron star can serve as a mechanism for the collapse of a neutron star under the bombardment of the gamma rays produced during gamma ray bursts. This mechanism can provide a possible solution to the missing pulsar problem in the galactic center.  more » « less
Award ID(s):
2013222
NSF-PAR ID:
10440679
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2536
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MDPI (Ed.)
    In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident g-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center. 
    more » « less
  2. In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center. 
    more » « less
  3. MDPI (Ed.)
    In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest- Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center 
    more » « less
  4. Bruno, G.E. ; Chiodini, G. ; Colangelo, P. ; Corianò, C. ; Creanza, D.M. ; De Fazio, F. ; Nappi, E. (Ed.)
    Several anomalous electromagnetic effects that can take place in quark matter at low temperatures and intermediate densities will be discussed. The anomalous transport properties of the spatially inhomogeneous phase of quark matter known as the Magnetic Dual Chiral Density Wave (MDCDW) phase will be reviewed. Going beyond mean-field approximation, it will be shown how linearly polarized electromagnetic waves that penetrate the MDCDW medium mix with the phonon fluctuations to give rise to two hybridized modes of propagation called axion polaritons. Finally, some possible implications of these results for the astrophysics of neutron stars will be indicated. 
    more » « less
  5. Abstract

    This paper proposes an alternative mechanism to solve the so-called missing pulsar problem, a standing paradox between the theoretical expectations about the number of pulsars that should exist in the galaxy center of the Milky Way and their absence in the observations. The mechanism is based on the transformation of incident$$\gamma $$γrays into hybridized modes, known as axion-polaritons, which can exist inside highly magnetized quark stars with a quark matter phase known as the magnetic dual chiral density wave phase. This phase, which is favored over several other dense matter phases candidates at densities a few times nuclear saturation density, has already passed several important astrophysical tests. In the proposed mechanism, the absence of young magnetars occurs because as electromagnetic waves inside the star can only propagate through the hybridized modes, incident photons coming from a$$\gamma $$γ-ray burst get transformed into massless and massive axion polaritons by the Primakoff effect. Once thermalized, the massive axion-polaritons can self-gravitate up to a situation where their total mass overpasses the Chandrasekhar limit for these bosons, producing a mini blackhole that collapses the star.

     
    more » « less