skip to main content


Title: From classical to quantum regime of topological surface states via defect engineering
Since the notion of topological insulator (TI) was envisioned in late 2000s, topology has become a new paradigm in condensed matter physics. Realization of topology as a generic property of materials has led to numerous predictions of topological effects. Although most of the classical topological effects, directly resulting from the presence of the spin-momentum-locked topological surface states (TSS), were experimentally confirmed soon after the theoretical prediction of TIs, many topological quantum effects remained elusive for a long while. It turns out that native defects, particularly interfacial defects, have been the main culprit behind this impasse. Even after quantum regime is achieved for the bulk states, TSS still tends to remain in the classical regime due to high density of interfacial defects, which frequently donate mobile carriers due to the very nature of the topologically-protected surface states. However, with several defect engineering schemes that suppress these effects, a series of topological quantum effects have emerged including quantum anomalous Hall effect, quantum Hall effect, quantized Faraday/Kerr rotations, topological quantum phase transitions, axion insulating state, zeroth-Landau level state, etc. Here, we review how these defect engineering schemes have allowed topological surface states to pull out of the murky classical regime and reveal their elusive quantum signatures, over the past decade.  more » « less
Award ID(s):
2004125
NSF-PAR ID:
10440700
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SciPost Physics Lecture Notes
ISSN:
2590-1990
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau’s order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime. Here we report the discovery of a giant spontaneous Hall effect in the Kondo semimetal C e 3 B i 4 P d 3 that is noncentrosymmetric but preserves time-reversal symmetry. We attribute this finding to Weyl nodes—singularities of the Berry curvature—that emerge in the immediate vicinity of the Fermi level due to the Kondo interaction. We stress that this phenomenon is distinct from the previously detected anomalous Hall effect in materials with broken time-reversal symmetry; instead, it manifests an extreme topological response that requires a beyond-perturbation-theory description of the previously proposed nonlinear Hall effect. The large magnitude of the effect in even tiny electric and zero magnetic fields as well as its robust bulk nature may aid the exploitation in topological quantum devices. 
    more » « less
  2. In intrinsic magnetic topological insulators, Dirac surface-state gaps are prerequisites for quantum anomalous Hall and axion insulating states. Unambiguous experimental identification of these gaps has proved to be a challenge, however. Here, we use molecular beam epitaxy to grow intrinsic MnBi 2 Te 4 thin films. Using scanning tunneling microscopy/spectroscopy, we directly visualize the Dirac mass gap and its disappearance below and above the magnetic order temperature. We further reveal the interplay of Dirac mass gaps and local magnetic defects. We find that, in high defect regions, the Dirac mass gap collapses. Ab initio and coupled Dirac cone model calculations provide insight into the microscopic origin of the correlation between defect density and spatial gap variations. This work provides unambiguous identification of the Dirac mass gap in MnBi 2 Te 4 and, by revealing the microscopic origin of its gap variation, establishes a material design principle for realizing exotic states in intrinsic magnetic topological insulators. 
    more » « less
  3. Abstract

    In insulating crystals, it was previously shown that defects with two fewer dimensions than the bulk can bind topological electronic states. We here further extend the classification of topological defect states by demonstrating that the corners of crystalline defects with integer Burgers vectors can bind 0D higher-order end (HEND) states with anomalous charge and spin. We demonstrate that HEND states are intrinsic topological consequences of the bulk electronic structure and introduce new bulk topological invariants that are predictive of HEND dislocation states in solid-state materials. We demonstrate the presence of first-order 0D defect states in PbTe monolayers and HEND states in 3D SnTe crystals. We relate our analysis to magnetic flux insertion in insulating crystals. We find thatπ-flux tubes in inversion- and time-reversal-symmetric (helical) higher-order topological insulators bind Kramers pairs of spin-charge-separated HEND states, which represent observable signatures of anomalous surface half quantum spin Hall states.

     
    more » « less
  4. Two-dimensional (2D) topological insulators (TIs) hold great promise for future quantum information technologies. Among the 2D-TIs, the TiNI monolayer has recently been proposed as an ideal material for achieving the quantum spin Hall effect at room temperature. Theoretical predictions suggest a sizable bandgap due to the spin–orbit coupling (SOC) of the electrons at and near the Fermi level with a nontrivial  2 topology of the electronic states, which is robust under external strain. However, our detailed first-principles calculations reveal that, in contrast to these predictions, the TiNI monolayer has a trivial bandgap in the equilibrium state with no band inversion, despite SOC opening the bandgap. Moreover, we show that electron correlation effects significantly impact the topological and structural stabilities of the system under external strains. We employed a range of density functional theory (DFT) approaches, including HSE06, PBE0, TB-mBJ, and GGA+ U , to comprehensively investigate the nontrivial topological properties of this monolayer. Our results demonstrate that using general-purpose functionals such as PBE-GGA for studying TIs can lead to false predictions, potentially misleading experimentalists in their efforts to discover new TIs. 
    more » « less
  5. Originating with the discovery of the quantum Hall effect (QHE) in condensed matter physics, topological order has been receiving increased attention also for classical wave phenomena. Topological protection enables efficient and robust signal transport; mechanical topological insulators (TIs), in particular, are easy to fabricate and exhibit interfacial wave transport with minimal dissipation, even in the presence of sharp edges, defects, or disorder. Here, we report the experimental demonstration of a phononic crystal Floquet TI (FTI). Hexagonal arrays of circular piezoelectric disks bonded to a PLA substrate, shunted through negative electrical capacitance, and manipulated by external integrated circuits, provide the required spatiotemporal modulation scheme to break time-reversal symmetry and impart a synthetic angular momentum bias that can induce strong topological protection on the lattice edges. Our proposed reconfigurable FTI may find applications for robust acoustic emitters and mechanical logic circuits, with distinct advantages over electronic equivalents in harsh operating conditions. 
    more » « less