Two‐coordinate carbene Cu(Ι) amide complexes with sterically bulky groups such as the diisopropyl phenyl (dipp) on the carbenes have been shown to have comparable performance to the phosphorescent emitters bearing heavy atoms such as iridium and platinum. These bulky groups enforce a coplanar molecular structure and suppress the nonradiative decay rates. Here, three different two‐coordinate Cu(Ι) complexes were investigated that bear a common thiazole carbene, 3‐(2,6‐diisopropylphenyl)‐4,5‐dimethylthiazol‐2‐ylidene, with only a single dipp group, and carbazolyl ligands with substituents of varying steric bulkorthoto N. These substituents have a negligible impact on luminescence energies of the complexes but serve to modulate the rotation barriers along the metal–ligand coordinate bond. The geometric arrangement of ligands (syn‐ oranti‐conformer) in complexes with alkyl substituents were found to differ, beingsynin the solid state versusantiin solution as revealed by crystallographic analysis and nuclear magnetic resonance spectroscopy. In addition, calculations were performed to determine potential energy surfaces for different conformations of the three complexes to provide a theoretical evaluation of rotation barriers around the metal–ligand bond axis. The relationship between rotation barriers and photophysical properties demonstrate that rates for nonradiative decay decrease with increasing bulk of the substituents on the carbazolyl ligand.
more »
« less
Homolytic Pd II –C Bond Cleavage in the MILRad Process: Reversibility and Termination Mechanism
This work probed the thermal “switchability” from ethylene coordination/insertion to controlled radical polymerization of methyl acrylate (MA) for Brookhart-type α-diimine PdII catalysts. The investigation focused on the extremely bulky 2,6-bis(3,5-dimethylphenyl)-4-methylphenyl (Xyl4Ph) α-diimine N-substituents to probe reversible PdII–C bond activation in the MA-quenched Pd-capped PE intermediate and reversible trapping during radical MA polymerization. The substituent steric effect on the relative stability of various [PE–MA–PdII(ArN═CMeCMe═NAr)]+ chain-end structures and on the bond dissociation-free energy (BDFE) for the homolytic PdII–C bond cleavage has been assessed by DFT calculations at the full quantum mechanics (QM) and QM/molecular mechanics (QM/MM) methods. The structures comprise ester-chelated forms with the Pd atom bonded to the α, β, and γ C atoms as a result of 2,1 MA insertion into the PE–Pd bond and of subsequent chain walking, as well as related monodentate (ring-opened) forms resulting from the addition of MA or acetonitrile. The opened Cα-bonded form is electronically favored for smaller N-substituents, including 2,6-diisopropylphenyl (Dipp), particularly when MeCN is added, but the open Cγ-bonded form is preferred for the extremely bulky system with Ar = Xyl4Ph. The Pdα–C bond is the weakest one to cleave, with the BDFE decreasing as the Ar steric bulk is increased (31.8, 25.8, and 12.6 kcal mol–1 for Ph, Dipp, and Xyl4Ph, respectively). However, experimental investigations on the [PE–MA–PdII(ArN═CMeCMe═NAr)]+ (Ar = Xyl4Ph) macroinitiator do not show any evidence of radical formation under thermal activation conditions, while photolytic activation produces both TEMPO-trapped (TEMPO = 2,2,6,6-tetramethylpiperidinyloxy) and unsaturated MA-containing PE chains. The DFT investigation has highlighted a low-energy pathway for termination of the PE–MA• radicals by disproportionation, promoted by β-H elimination/dissociation and H-atom abstraction from the PdII–H intermediate by a second radical. This phenomenon appears to be the main reason for the failure of this PdII system to control the radical polymerization of MA by the OMRP (OMRP = organometallic-mediated radical polymerization) mechanism.
more »
« less
- Award ID(s):
- 2108576
- PAR ID:
- 10441021
- Date Published:
- Journal Name:
- Organometallics
- ISSN:
- 0276-7333
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the design and synthesis of an α-diimine PdII catalyst that copolymerizes functionalized and long chain α-olefins to produce semicrystalline polyethylene materials. Through a chain-straightening polymerization mechanism, the catalyst afforded high-melting point polymers with Tm values of up to 120 °C. The chain-straightening polymerization operates with high [ω,1]-insertion selectivity at high alkene concentrations and with varying α-olefin chain lengths, including propylene. The Pd catalyst can copolymerize 1-decene and methyl decenoate into semicrystalline ester-functionalized polymers with incorporation percentages proportional to the comonomer ratio (up to 13 mol %). 13C nuclear magnetic resonance and isotope labeling studies revealed that the improved selectivity relative to those of other systems arises from a high selectivity for [2,1]-insertion (96%) coupled with rapid chain-walking for a total of 90 mol % of 1-decene undergoing net [10,1]-insertion.more » « less
-
The photochemically generated synthesis of a terminal uranium nitride species is here reported and an examination of its intra- and intermolecular chemistry is presented. Treatment of the U( iii ) complex L Ar UI(DME) ((L Ar ) 2− = 2,2′′-bis(Dippanilide)- p -terphenyl; Dipp = 2,6-diisopropylphenyl) with LiNIm Dipp ((NIm Dipp ) − = 1,3-bis(Dipp)-imidazolin-2-iminato) generates the sterically congested 3N-coordinate compound L Ar U(NIm Dipp ) ( 1 ). Complex 1 reacts with 1 equiv. of Ph 3 CN 3 to give the U( iv ) azide L Ar U(N 3 )(NIm Dipp ) ( 2 ). Structural analysis of 2 reveals inequivalent N α –N β > N β –N γ distances indicative of an activated azide moiety predisposed to N 2 loss. Room-temperature photolysis of benzene solutions of 2 affords the U( iv ) amide ( N -L Ar )U(NIm Dipp ) ( 3 ) via intramolecular N-atom insertion into the benzylic C–H bond of a pendant isopropyl group of the (L Ar ) 2− ligand. The formation of 3 occurs as a result of the intramolecular interception of the intermediately generated, terminal uranium nitride (L Ar )U(N)(NIm Dipp ) ( 3′ ). Evidence for the formation of 3′ is further bolstered by its intermolecular capture, accomplished by photolyzing solutions of 2 in the presence of an isocyanide or PMe 3 to give (L Ar )U[NCN(C 6 H 3 Me 2 )](NIm Dipp ) ( 5 ) and ( N , C -L Ar *)U(NPMe 3 )(NIm Dipp ) ( 6 ), respectively. These results expand upon the limited reactivity studies of terminal uranium–nitride moieties and provide new insights into their chemical properties.more » « less
-
null (Ed.)We report the facile activation of aryl E–H (ArEH; E = N, O, S; Ar = Ph or C 6 F 5 ) or ammonia N–H bonds via coordination-induced bond weakening to a redox-active boron center in the complex, (1 − ). Substantial decreases in E–H bond dissociation free energies (BDFEs) are observed upon substrate coordination, enabling subsequent facile proton-coupled electron transfer (PCET). A drop of >50 kcal mol −1 in H 2 N–H BDFE upon coordination was experimentally determined.more » « less
-
We report the synthesis, characterization and reactivity of an air-stable, well-defined acenaphthoimidazolylidene palladium–BIAN–NHC chloro dimer complex, [Pd(BIAN–IPr)(μ-Cl)Cl] 2 . This rapidly activating catalyst merges the reactive properties of palladium chloro dimers, [Pd(NHC)(μ-Cl)Cl] 2 , with the attractive structural features of the BIAN framework. [Pd(BIAN–IPr)(μ-Cl)Cl] 2 is the most reactive Pd( ii )–NHC precatalyst discovered to date undergoing fast activation under both an inert atmosphere and aerobic conditions. The catalyst features bulky-yet-flexible sterics that render the C–H substituents closer to the metal center in combination with rapid dissociation to monomers and strong σ-donor properties. [Pd(BIAN–IPr)(μ-Cl)Cl] 2 should be considered as a catalyst for reactions using well-defined Pd( ii )–NHCs.more » « less