Abstract The brain vasculature maintains brain homeostasis by tightly regulating ionic, molecular, and cellular transport between the blood and the brain parenchyma. These blood–brain barrier (BBB) properties are impediments to brain drug delivery, and brain vascular dysfunction accompanies many neurological disorders. The molecular constituents of brain microvascular endothelial cells (BMECs) and pericytes, which share a basement membrane and comprise the microvessel structure, remain incompletely characterized, particularly in humans. To improve the molecular database of these cell types, we performed RNA sequencing on brain microvessel preparations isolated from snap-frozen human and mouse tissues by laser capture microdissection (LCM). The resulting transcriptome datasets from LCM microvessels were enriched in known brain endothelial and pericyte markers, and global comparison identified previously unknown microvessel-enriched genes. We used these datasets to identify mouse-human species differences in microvessel-associated gene expression that may have relevance to BBB regulation and drug delivery. Further, by comparison of human LCM microvessel data with existing human BMEC transcriptomic datasets, we identified novel putative markers of human brain pericytes. Together, these data improve the molecular definition of BMECs and brain pericytes, and are a resource for rational development of new brain-penetrant therapeutics and for advancing understanding of brain vascular function and dysfunction.
more »
« less
Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates
Abstract Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.
more »
« less
- Award ID(s):
- 1707316
- PAR ID:
- 10441044
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adeno-associated viruses (AAVs) are a leading vector for gene therapy, yet their clinical utility is limited by the lack of robust quality control methods to distinguish between empty (AAVempty), partially loaded (AAVpartial), and fully DNA loaded (AAVfull) capsids. Current analytical techniques provide partial insights but remain limited in sensitivity, throughput, or resolution. Here we present a multimodal plasmonic nanopore sensor that integrates optical trapping with electrical resistive-pulse sensing to characterize AAV9 capsids at the single-particle level in tens of μL sample volumes and fM range concentrations. As a model system, we employed AAV9 capsids not loaded with DNA, capsids loaded with a self-complementary 4.7 kbp DNA (AAVscDNA), and ones loaded with single-stranded 4.7 kbp DNA (AAVssDNA). Ground-truth validation was performed with analytical ultracentrifugation (AUC). Nanosensor data were acquired concurrently for optical step changes (occurring at AAV trapping and un-trapping) both in transmittance and reflectance geometries, and electrical nanopore resistive pulse signatures, making for a total of five data dimensions. The acquired data was then filtered and clustered by Gaussian mixture models (GMMs), accompanied by spectral clustering stability analysis, to successfully separate between AAV species based on their DNA load status (AAVempty, AAVpartial, AAVfull) and DNA load type (AAVscDNA versus AAVssDNA). The motivation for quantifying the AAVempty and AAVpartial population fractions is that they reduce treatment efficacy and increase immunogenicity. Likewise, the motivation to identify AAVscDNA population fractions is that these have much higher transfection rates. Importantly, the results showed that the nanosensor could differentiate between AAVscDNA and AAVssDNA despite their identical masses. In contrast, AUC could not differentiate between AAVscDNA and AAVssDNA. An equimolar mixture of AAVscDNA, AAVssDNA and AAVempty was also measured with the sensor, and the results showed the expected population fractions, supporting the capacity of the method to differentiate AAV load status in heterogeneous solutions. In addition, less common optical and electrical signal signatures were identified in the acquired data, which were attributed to debris, rapid entry re-entry to the optical trap, or weak optical trap exits, representing critical artifacts to recognize for correct interpretation of the data. Together, these findings establish plasmonic nanopore sensing as a promising platform for quantifying AAV DNA loading status and genome type with the potential to extend ultra-sensitive single-particle characterization beyond the capabilities of existing methods.more » « less
-
In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91–94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86–90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.more » « less
-
Abstract Background Protein aggregates can be found in peripheral organs, such as the heart, kidney, and pancreas, but little is known about the impact of peripherally misfolded proteins on neuroinflammation and brain functional recovery following ischemic stroke. Methods Here, we studied the ischemia/reperfusion (I/R) induced brain injury in mice with cardiomyocyte-restricted overexpression of a missense (R120G) mutant small heat shock protein, αB-crystallin (CryAB R120G ), by examining neuroinflammation and brain functional recovery following I/R in comparison to their non-transgenic (Ntg) littermates. To understand how peripherally misfolded proteins influence brain functionality, exosomes were isolated from CryAB R120G and Ntg mouse blood and were used to treat wild-type (WT) mice and primary cortical neuron-glia mix cultures. Additionally, isolated protein aggregates from the brain following I/R were isolated and subjected to mass-spectrometric analysis to assess whether the aggregates contained the mutant protein, CryAB R120G . To determine whether the CryAB R120G misfolding can self-propagate, a misfolded protein seeding assay was performed in cell cultures. Results Our results showed that CryAB R120G mice exhibited dramatically increased infarct volume, delayed brain functional recovery, and enhanced neuroinflammation and protein aggregation in the brain following I/R when compared to the Ntg mice. Intriguingly, mass-spectrometric analysis of the protein aggregates isolated from CryAB R120G mouse brains confirmed presence of the mutant CryAB R120G protein in the brain. Importantly, intravenous administration of WT mice with the exosomes isolated from CryAB R120G mouse blood exacerbated I/R-induced cerebral injury in WT mice. Moreover, incubation of the CryAB R120G mouse exosomes with primary neuronal cultures induced pronounced protein aggregation. Transduction of CryAB R120G aggregate seeds into cell cultures caused normal CryAB proteins to undergo dramatic aggregation and form large aggregates, suggesting self-propagation of CryAB R120G misfolding in cells. Conclusions These results suggest that peripherally misfolded proteins in the heart remotely enhance neuroinflammation and exacerbate brain injury following I/R likely through exosomes, which may represent an underappreciated mechanism underlying heart-brain crosstalk.more » « less
-
null (Ed.)Rationale: There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. Objective: We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. Methods and Results: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2 −/y , Akita (type 1 diabetes mellitus), and ACE2 −/y -Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2 −/y -Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2 −/y -Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. Conclusions: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2 −/y -Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.more » « less
An official website of the United States government

