skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: High-harmonic generation in spin and charge current pumping at ferromagnetic or antiferromagnetic resonance in the presence of spin–orbit coupling
Abstract

One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, thez-axis) with frequencyω0due to absorption of low-power microwaves of frequencyω0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that componentISzof spin current vector(ISx(t),ISy(t),ISz)ω0is time-independent whileISx(t)andISy(t)oscillate harmonically in time with a single frequencyω0whereas pumped charge current is zeroI0in the same adiabaticω0limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spinISα(t)and chargeI(t) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiplesNω0of the driving frequencyω0. The cutoff order of such high harmonics increases with SOC strength, reachingNmax11in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoffNmax25can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.

 
more » « less
NSF-PAR ID:
10441072
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Materials
Volume:
6
Issue:
4
ISSN:
2515-7639
Page Range / eLocation ID:
Article No. 045001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  2. Abstract

    We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio12/13I[12CO(J=10)]/I[13CO(J=10)]and the properties of the stars and ionized gas. Higher12/13values are found in interacting galaxies compared to those in noninteracting galaxies. The global12/13slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged12/13profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of12/13are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged12/13increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged12/13does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks,12/13is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on12/13, which further complicates the interpretations of12/13variations.

     
    more » « less
  3. Abstract

    The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbationHε(p,q,I,φ,t)=h(I)+i=1n±12pi2+Vi(qi)+εH1(p,q,I,φ,t),where(p,q)Rn×Tn,(I,φ)Rd×Tdwithn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}.

     
    more » « less
  4. Abstract

    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined asHI103ΩHIbHI+fμ2, where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We findHI=1.510.97+3.60for LRGs (z= 0.84),HI=6.763.79+9.04for ELGs (z= 0.96), andHI=1.680.67+1.10for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.

     
    more » « less
  5. Abstract

    The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I;RI= 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II;RII= 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out tor= 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1shocks that power the ionized gas, withvshock=σwind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas:MIIHIIMIIH2=(12)×109ManddM/dtIIHIIdM/dtIIH2=170250Myr−1. The outer wind has slowed, so thatdM/dtIHII10Myr−1, but it contains more ionized gas,MIHII=5×109M. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p“boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.

     
    more » « less