skip to main content


This content will become publicly available on August 1, 2024

Title: Ontogenetic changes in bite force and gape in tufted capuchins
ABSTRACT Bite force and gape are two important performance metrics of the feeding system, and these metrics are inversely related for a given muscle size because of fundamental constraints in sarcomere length–tension relationships. How these competing performance metrics change in developing primates is largely unknown. Here, we quantified in vivo bite forces and gapes across ontogeny and examined these data in relation to body mass and cranial measurements in captive tufted capuchins, Sapajus spp. Bite force and gape were also compared across geometric and mechanical properties of mechanically challenging foods to investigate relationships between bite force, gape and food accessibility (defined here as the ability to breach shelled nuts). Bite forces at a range of gapes and feeding behavioral data were collected from a cross-sectional ontogenetic series of 20 captive and semi-wild tufted capuchins at the Núcleo de Procriação de Macacos-Prego Research Center in Araçatuba, Brazil. These data were paired with body mass, photogrammetric measures of jaw length and facial width, and food geometric and material properties. Tufted capuchins with larger body masses had absolutely higher in vivo bite forces and gapes, and animals with wider faces had absolutely higher bite forces. Bite forces and gapes were significantly smaller in juveniles compared with subadults and adults. These are the first primate data to empirically demonstrate the gapes at which maximum active bite force is generated and to demonstrate relationships to food accessibility. These data advance our understanding of how primates meet the changing performance demands of the feeding system during development.  more » « less
Award ID(s):
2316863 1945767 1944915 1945771
NSF-PAR ID:
10441152
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
226
Issue:
15
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Dietary ecology and its relationship with both muscle architecture and bite force potential has been studied in many mammalian (and non‐mammalian) taxa. However, despite the diversity of dietary niches that characterizes the superfamily Musteloidea, the masticatory muscle fiber architecture of its members has yet to be investigated anatomically. In this study, we present myological data from the jaw adductors in combination with biomechanical data derived from craniomandibular measurements for 17 species representing all four families (Ailuridae, Mephitidae, Mustelidae, and Procyonidae) of Musteloid. These data are combined to calculate bite force potential at each of three bite points along the dental row. Across our sample as a whole, masticatory muscle mass scaled with isometry or slight positive allometry against both body mass and skull size (measured via a cranial geometric mean). Total jaw adductor physiological cross‐sectional area scaled with positive allometry against both body mass and skull size, while weighted fiber length scaled with negative allometry. From a dietary perspective, fiber length is strongly correlated with dietary size such that taxa that exploit larger foods demonstrated myological adaptations toward gape maximization. However, no consistent relationship between bite force potential and dietary mechanical resistance was observed. These trends confirm previous findings observed within the carnivoran family Felidae (as well as within primates), suggesting that the mechanisms by which masticatory anatomy adapts to dietary ecology may be more universally consistent than previously recognized. Anat Rec, 302:2287–2299, 2019. © 2019 American Association for Anatomy

     
    more » « less
  2. Abstract

    The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.

     
    more » « less
  3. Effective interpretation of historical selective regimes requires comprehensive in vivo performance evaluations and well-constrained ecomorphological prox- ies. The feeding apparatus is a frequent target of such evolutionary studies due to a direct relationship between feeding and survivorship, and the durability of craniodental elements in the fossil record. Among vertebrates, behaviors such as bite force have been central to evaluation of clade dynamics; yet, in the absence of detailed performance studies, such evaluations can misidentify potential selective factors and their roles. Here, we combine the results of a total-clade performance study with fossil-inclusive, phylogenetically informed methods to assess bite-force proxies throughout mesoeucrocodylian evolution. Although bite-force shifts were previously thought to respond to changing rostrodental selective regimes, we find body-size dependent conservation of performance proxies throughout the history of the clade, indicating stabilizing selection for bite-force potential. Such stasis reveals that mesoeucrocodylians with dietary ecologies as disparate as herbivory and hypercarnivory maintain similar bite-force-to-body-size relationships, a pattern which contrasts the pre- cept that vertebrate bite forces should vary most strongly by diet. Furthermore, it may signal that bite-force conservation supported mesoeucrocodylian craniodental disparity by providing a stable performance foundation for the exploration of novel ecomorphospace. 
    more » « less
  4. Abstract

    Size and shape are often considered important variables that lead to variation in performance. In studies of feeding, size‐corrected metrics of the skull are often used as proxies of biting performance; however, few studies have examined the relationship between cranial shape in its entirety and estimated bite force across species and how dietary ecologies may affect these variables differently. Here, we used geometric morphometric and phylogenetic comparative approaches to examine relationships between cranial morphology and estimated bite force in the carnivoran clade Musteloidea. We found a strong relationship between cranial size and estimated bite force but did not find a significant relationship between cranial shape and size‐corrected estimated bite force. Many‐to‐one mapping of form to function may explain this pattern because a variety of evolutionary shape changes rather than a single shape change may have contributed to an increase in relative biting ability. We also found that dietary ecologies influenced cranial shape evolution but did not influence cranial size nor size‐corrected bite force evolution. Although musteloids with different diets exhibit variation in cranial shapes, they have similar estimated bite forces suggesting that other feeding performance metrics and potentially nonfeeding traits are also important contributors to cranial evolution. We postulate that axial and appendicular adaptations and the interesting feeding behaviours reported for species within this group also facilitate different dietary ecologies between species. Future work integrating cranial, axial and appendicular form and function with behavioural observations will reveal further insights into the evolution of dietary ecologies and other ecological variables.

     
    more » « less
  5. Abstract

    Evaluating fish feeding behaviours is imperative to understanding prey resource use in the field. Previous work on fish feeding has taken place almost exclusively in a laboratory setting, which may impose artificial restrictions. Thus, we aimed to evaluate the constraints the captive setting places on fish feeding behaviours.

    We recorded polymorphic (littoral and pelagic) bluegill sunfish (Lepomis macrochirus) feeding in the laboratory and the field using a high‐speed camera and underwater cameras. Following successful strikes video events, were digitised using ImageJ (laboratory) and Argus (field).

    Gape velocity, ram velocity, and body deceleration were higher in the field than in captive fish. Significantly greater gape velocity in field fish suggests that these fish feed with greater suction pressure than captive fish. Prey effects were detected, as brine shrimp feeding events were characterised by slower gape and ram velocities and a smaller gape. Feeding events on brine shrimp in the field were similar to feeding events on worms in the laboratory suggesting an artefact of training.

    These results indicate that feeding behaviours measured in the laboratory may not be representative of feeding behaviours in the wild. Further consideration of organismal performance and laboratory constraints should be taken in future functional studies.

     
    more » « less