skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling large multivariate spatial data with a multivariate fused Gaussian process
Award ID(s):
2053668
PAR ID:
10441184
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Indian Statistical Association
Volume:
59
Issue:
2
ISSN:
0537-2585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The joint analysis of imaging‐genetics data facilitates the systematic investigation of genetic effects on brain structures and functions with spatial specificity. We focus on voxel‐wise genome‐wide association analysis, which may involve trillions of single nucleotide polymorphism (SNP)‐voxel pairs. We attempt to identify underlying organized association patterns of SNP‐voxel pairs and understand the polygenic and pleiotropic networks on brain imaging traits. We propose abi‐cliquegraph structure (ie, a set of SNPs highly correlated with a cluster of voxels) for the systematic association pattern. Next, we develop computational strategies to detect latent SNP‐voxelbi‐cliquesand an inference model for statistical testing. We further provide theoretical results to guarantee the accuracy of our computational algorithms and statistical inference. We validate our method by extensive simulation studies, and then apply it to the whole genome genetic and voxel‐level white matter integrity data collected from 1052 participants of the human connectome project. The results demonstrate multiple genetic loci influencing white matter integrity measures on splenium and genu of the corpus callosum. 
    more » « less
  2. We introduce temporal multimodal multivariate learning, a new family of decision making models that can indirectly learn and transfer online information from simultaneous observations of a probability distribution with more than one peak or more than one outcome variable from one time stage to another. We approximate the posterior by sequentially removing additional uncertainties across different variables and time, based on data-physics driven correlation, to address a broader class of challenging time-dependent decision-making problems under uncertainty. Extensive experiments on real-world datasets ( i.e., urban traffic data and hurricane ensemble forecasting data) demonstrate the superior performance of the proposed targeted decision-making over the state-of-the-art baseline prediction methods across various settings. 
    more » « less
  3. null (Ed.)
  4. Point process modeling is gaining increasing attention, as point process type data are emerging in a large variety of scientific applications. In this article, motivated by a neuronal spike trains study, we propose a novel point process regression model, where both the response and the predictor can be a high-dimensional point process. We model the predictor effects through the conditional intensities using a set of basis transferring functions in a convolutional fashion. We organize the corresponding transferring coefficients in a three-way tensor, then impose the low-rank, sparsity, and subgroup structures on this coefficient tensor. These structures help reduce the dimensionality, integrate information across different individual processes, and facilitate the interpretation. We develop a highly scalable optimization algorithm for parameter estimation. We derive the large sample error bound for the recovered coefficient tensor, and establish the subgroup identification consistency, while allowing the dimension of the multivariate point process to diverge. We demonstrate the efficacy of our method through both simulations and a cross-area neuronal spike trains analysis in a sensory cortex study. 
    more » « less