Abstract While the quantity, quality, and variety of movement data has increased, methods that jointly allow for population- and species-level movement parameters to be estimated are still needed. We present a formal data integration approach to combine individual-level movement and population-level distribution data. We show how formal data integration can be used to improve precision of individual and population level movement parameters and allow additional population level metrics (e.g., connectivity) to be formally quantified.We describe three components needed for an Integrated Movement Model (IMM): a model for individual movement, a model for among-individual heterogeneity, and a model to quantify changes in species distribution. We outline a general IMM framework and develop and apply a specific stochastic differential equation model to a case study of telemetry and species distribution data for golden eagles in western North American during spring migration.We estimate eagle movements during spring migration from data collected between 2011 and 2019. Individual heterogeneity in migration behavior was modeled for two sub-populations, individuals that make significant northward migrations and those that remained in the southern Rocky Mountain region through the summer. As is the case with most tracking studies, the sample population of individual telemetered birds is not representative of the population, and underrepresents the proportion of long-distance migrants in. The IMM was able to provide a more biological accurate subpopulation structure by jointly estimating the structure using the species distribution data. In addition, the integrated approach a) improves accuracy of other estimated movement parameters, b) allows us to estimate the proportion of migratory and non-migratory birds in a given location and time, and c) estimate future spatio-temporal distributions of birds given a wintering location, which provide estimates of seasonal connectivity and migratory routes.We demonstrate how IMMs can be successfully used to address the challenge of estimating accurate population level movement parameters. Our approach can be generalized to a broad range of available movement models and data types, allowing us to significantly improve our knowledge of migration ecology across taxonomic groups, and address population and continental level information needs for conservation and management.
more »
« less
Individual‐based models of avian migration for estimating behavioural traits and predicting ecological interactions
Abstract Rapid advances in the field of movement ecology have led to increasing insight into both the population‐level abundance patterns and individual‐level behaviour of migratory species. Despite this progress, research questions that require scaling individual‐level understanding of the behaviour of migrating organisms to the population level remain difficult to investigate.To bridge this gap, we introduce a generalizable framework for training full‐annual cycle individual‐based models of migratory movements by combining information from tracking studies and species occurrence records. Focusing on migratory birds, we call this method: Models of Individual Movement of Avian Species (MIMAS). We implement MIMAS to design individual‐based models of avian migration that are trained using previously published weekly occurrence maps and fit via Approximate Bayesian Computation.MIMAS models leverage individual‐ and population‐level information to faithfully represent continental‐scale migration patterns. Models can be trained successfully for species even when little existing individual‐level data is available for parameterization by relying on population‐level information. In contrast to existing mathematical models of migration, MIMAS explicitly represents and estimates behavioural attributes of migrants. MIMAS can additionally be used to simulate movement over consecutive migration seasons, and models can be easily updated or validated as new empirical data on migratory behaviours becomes available.MIMAS can be applied to a variety of research questions that require representing individual movement at large scales. We demonstrate three applied uses for MIMAS: estimating population‐specific migratory phenology, predicting the spatial patterns and magnitude of ectoparasite dispersal by migrants, and simulating the spread of a pathogen across the annual cycle of a migrant species. Currently, MIMAS can easily be used to build models for hundreds of migratory landbird species but can also be adapted in the future to build models of other types of migratory animals.
more »
« less
- PAR ID:
- 10441331
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Methods in Ecology and Evolution
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2041-210X
- Format(s):
- Medium: X Size: p. 2464-2481
- Size(s):
- p. 2464-2481
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A prominent challenge for managing migratory species is the development of conservation plans that accommodate spatiotemporally varying distributions throughout the year. Migratory networks are spatially‐explicit models that incorporate migratory assignment and seasonal abundance data to define patterns of connectivity between stages of the annual cycle. These models are particularly useful for widespread application because different types of migratory data can be used to quantify individual and population‐level movement across the annual cycle of migratory species. While there are clear benefits of combining migratory assignment and abundance data for the development of conservation strategies, there is a concurrent need for corresponding user‐friendly software to facilitate the integration of these data for conservation.Here, we presentmignette(migratory network tools ensemble), an R package for developing migratory network models to estimate network connectivity among migratory populations. We demonstrate the functionality ofmignettewith three empirical examples that highlight the use of different types of tracking data for migratory assignment.mignettefacilitates the modelling of migratory networks by providing R functions to: (1) define breeding and nonbreeding nodes, (2) assemble abundance and assignment data and (3) model the migratory network. Additionally,mignetteprovides R functions to visualize modelled migratory networks.With increasing availability of migratory assignment and abundance data,mignetterepresents a valuable tool for developing effective conservation strategies for migratory species.more » « less
-
Abstract Migration is an adaptive life‐history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare.Here, we use a nearly 20‐year record of individual‐based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada.We test whether bottom‐up (forage quality) or top‐down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause‐specific mortality by wolves and grizzly bears, and (iv) population abundance.We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom‐up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area.Cause‐specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane‐migrant tactics, but wolf predation risk traded‐off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area.The changes in migratory behaviour translated to population abundance, where abundance of the montane‐migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population.Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade‐offs.more » « less
-
Abstract Pathogen and parasite infections are increasingly recognized as powerful drivers of animal movement, including migration. Yet, infection‐related migration benefits can result from a combination of environmental and/or social conditions, which can be difficult to disentangle.Here, we focus on two infection‐related mechanisms that can favour migration: moving to escape versus recover from infection. By directly comparing the evolution of migration in response to each mechanism, we can evaluate the likely importance of changing abiotic conditions (linked to migratory recovery) with changing social conditions (linked to migratory escape) in terms of infection‐driven migration.We built a mathematical model and analysed it using numerically simulated adaptive dynamics to determine when migration should evolve for each migratory recovery and social migratory escape.We found that a higher fraction of the population migrated under migratory recovery than under social migratory escape. We also found that two distinct migratory strategies (e.g. some individuals always migrate and others only occasionally migrate) sometimes coexisted within populations with social migratory escape, but never with migratory recovery.Our results suggest that migratory recovery is more likely to promote the evolution of migratory behaviour, rather than escape from infected conspecifics (social migratory escape).more » « less
-
Abstract The timing of avian migration has evolved to exploit critical seasonal resources, yet plasticity within phenological responses may allow adjustments to interannual resource phenology. The diversity of migratory species and changes in underlying resources in response to climate change make it challenging to generalize these relationships.We use bird banding records during spring and fall migration from across North America to examine macroscale phenological responses to interannual fluctuations in temperature and long‐term annual trends in phenology.In total, we examine 19 species of North American wood warblers (family Parulidae), summarizing migration timing from 2,826,588 banded birds from 1961 to 2018 across 46 sites during spring and 124 sites during fall.During spring, warmer spring temperatures at banding locations translated to earlier median passage dates for 16 of 19 species, with an average 0.65‐day advancement in median passage for every 1°C increase in temperature, ranging from 0.25 to 1.26 days °C−1. During the fall, relationships were considerably weaker, with only 3 of 19 species showing a relationship with temperature. In those three cases, later departure dates were associated with warmer fall periods. Projecting these trends forward under climate scenarios of temperature change, we forecast continued spring advancements under shared socioeconomic pathways from 2041 to 2060 and 2081 to 2100 and more muted and variable shifts for fall.These results demonstrate the capacity of long‐distance migrants to respond to interannual fluctuations in temperatures, at least during the spring, and showcase the potential of North American bird banding data understanding phenological trends across a wide diversity of avian species.more » « less
An official website of the United States government
