skip to main content


Title: Isotopic niches do not follow the expectations of niche conservatism in the bird genus Cinclodes
Abstract

Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genusCinclodesand measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen. We find that all traits, measured individually, or as a composite measurement, lack any phylogenetic signal, which in turn suggests a high level of lability in ecological niches. We compared these metrics to the measurements of morphological traits in the same genus and found that isotopic niches are uniquely evolutionarily labile compared to other traits. Our results suggest that, inCinclodes, the realized niche evolves much faster than expected by the constraints of phylogenetic history and poses the question of whether this is a general pattern across the tree of life

 
more » « less
NSF-PAR ID:
10441491
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
36
Issue:
8
ISSN:
1010-061X
Format(s):
Medium: X Size: p. 1185-1197
Size(s):
p. 1185-1197
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    There has been considerable interest in niche conservatism, the idea that ecological variables are similar among related species. Much research has focused on climatic niches of recently diverged species, rather than deeper timescales or non‐climatic niche axes. Furthermore, it has been suggested that conservatism disappears over deeper timescales, and is greater in alpha niche traits (like diet and microhabitat) than beta niche variables (like climate). Here, we test these latter two ideas by comparing patterns of phylogenetic conservatism among 10 niche variables across major clades of land vertebrates.

    Location

    Global.

    Time Period

    Present to 350 million years ago.

    Major Taxa Studied

    Tetrapods, including amphibians, mammals, lepidosaurs (including lizards and snakes), turtles, crocodilians and birds.

    Methods

    The 10 niche variables included four alpha niche components (diet, diel activity, habitat, body temperature) and six beta niche components (related to climatic temperature and precipitation). We analysed these variables on time‐calibrated phylogenies with similar taxon sampling (~1700 species), using phylogenetic signal (lambda) to estimate conservatism, along with theDstatistic and estimates of evolutionary rates.

    Results

    Phylogenetic signal was generally strong across all variables, with lambda generally >0.80 (with 1.0 representing maximum signal). Nevertheless, mean phylogenetic signal was lower in beta niche traits than alpha niche traits (based on lambda and especially theDstatistic), and alpha niche traits showed significantly slower rates of evolution.

    Main Conclusions

    We address two long‐held views in the literature on niche conservatism, rejecting one but supporting the other. We show that phylogenetic signal does not disappear over deep timescales for many important niche variables, even over 350 million years. We also generally support greater conservatism in alpha niche traits than beta niche traits over hundreds of millions of years, a pattern that was previously suggested (but not explicitly tested) based on closely related species.

     
    more » « less
  2. Abstract

    Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein–Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.

     
    more » « less
  3. Summary

    Species in the genusSphagnumcreate, maintain, and dominate boreal peatlands through ‘extended phenotypes’ that allow these organisms to engineer peatland ecosystems and thereby impact global biogeochemical cycles. One such phenotype is the production of peat, or incompletely decomposed biomass, that accumulates when rates of growth exceed decomposition. Interspecific variation in peat production is thought to be responsible for the establishment and maintenance of ecological gradients such as the microtopographic hummock‐hollow gradient, along which sympatric species sort within communities.

    This study investigated the mode and tempo of functional trait evolution across 15 species ofSphagnumusing data from the most extensive studies ofSphagnumfunctional traits to date and phylogenetic comparative methods.

    We found evidence for phylogenetic conservatism of the niche descriptor height‐above‐water‐table and of traits related to growth, decay and litter quality. However, we failed to detect the influence of phylogeny on interspecific variation in other traits such as shoot density and suggest that environmental context can obscure phylogenetic signal. Trait correlations indicate possible adaptive syndromes that may relate to niche and its construction.

    This study is the first to formally test the extent to which functional trait variation amongSphagnumspecies is a result of shared evolutionary history.

     
    more » « less
  4. Abstract

    Niche theory suggests that the realized niche occupied by an organism in the field is a subset of the fundamental niche space of the organism, absent additional biotic and abiotic factors. Though often assumed, this discrepancy is rarely tested for specific organisms, and could act as a source of error in model predictions of biogeographical shifts resulting from temperature change which assume niche theory constraints. Here, we quantify the difference between fundamental and realized temperature niches for four dominant ecotypes ofProchlorococcus, including eMED4, eMIT9312, eMIT9313, and eNATL2A, and ask whether the realized temperature niches of each ecotype vary across ocean basins. The realized niches for the four ecotypes are, on average, 3.84°C ± 1.18°C colder (mean ± SD across all ocean basins and ecotypes) and 2.15°C ± 1.89°C wider than the lab‐measured fundamental niches. When divided into four ocean regions—North Atlantic, South Atlantic, North Pacific, and South Pacific—we find that the realized temperature niche optimum for a given ecotype compared to the fundamental temperature niche optimum differs across regions by as much as 7.93°C, while the niche width can differ by up to 9.48°C. Colder and wider realized niches may be a result of the metabolic risk associated with living in variable environments when the mean temperature is too close to the optimal temperature for growth or due to physical processes such as dispersal. The strong differences in temperature niches across ocean basins suggest that unresolved genetic diversity within ecotypes, local adaptation, and variable interactive ecological and environmental factors are likely to be important in shapingProchlorococcusrealized temperature niches.

     
    more » « less
  5. Abstract

    Niche conservatism—the retention of ecological traits across space and time—is an emerging topic of interest because it can predict responses to global change. The conservation of Grinnellian niche characteristics, like species‐habitat associations, has received widespread attention, but the conservation of Eltonian traits such as consumer–resource interactions remains poorly understood.

    The inability to quantify Eltonian niches through space and time has historically limited the assessment of Eltonian niche conservatism and the dynamics of foraging across populations. Consequently, the relative influence of endogenous factors like phylogeny versus exogenous features like environmental context has rarely been addressed.

    We tested Eltonian niche conservatism using a paired design to compare foraging among four populations of American martensMartes americanaand Pacific martensMartes caurina, morphologically and ecologically similar sister taxa that are allopatrically distributed throughout western North America. We developed a three‐stage isotopic framework and then quantified dietary niche overlap between the sister species and paired island‐mainland sites to assess the relative influence of endogenous (i.e., species) versus exogenous (i.e., environment) factors on Eltonian niches. First, we calculated pairwise dietary overlap in scaled δ‐space using standard ellipses. We then estimated proportional diets (“p‐space”) for individuals using isotopic mixing models and developed a novel utilization distribution overlap approach to quantify proportional dietary overlap. Lastly, we estimated population‐level proportional diets and quantified the differential use of functional prey groups across sites.

    We detected no pairwise overlap of dietary niches in δ‐space, and distributions of individual diets in p‐space revealed little overlap in core diets across populations. All pairwise comparisons of individuals revealed significant differences in diet, and population‐level comparisons detected contrasting use of functional prey groups.

    We developed a multi‐faceted isotopic framework to quantify Eltonian niches and found limited evidence of Eltonian niche conservatism across carnivore populations. Our findings are consistent with the growing recognition of dietary plasticity in consumers and suggest that consumer–resource dynamics are largely driven by exogenous environmental factors like land cover and community composition. These results illustrate the context‐dependent nature of foraging and indicate consumer functionality can be dynamic.

    Aplain language summaryis available for this article.

     
    more » « less