skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Free‐Viewpoint Relighting for Glossy Indirect Illumination
Abstract Precomputed Radiance Transfer (PRT) remains an attractive solution for real‐time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real‐time. However, practical PRT methods are usually limited to low‐frequency spherical harmonic lighting. All‐frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural‐wavelet PRT solution to high‐frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi‐layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real‐time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view‐dependent reflections and even caustics.  more » « less
Award ID(s):
2212085
PAR ID:
10441574
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
42
Issue:
4
ISSN:
0167-7055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Monte Carlo rendering of translucent objects with heterogeneous scattering properties is often expensive both in terms of memory and computation. If the scattering properties are described by a 3D texture, memory consumption is high. If we do path tracing and use a high dynamic range lighting environment, the computational cost of the rendering can easily become significant. We propose a compact and efficient neural method for representing and rendering the appearance of heterogeneous translucent objects. Instead of assuming only surface variation of optical properties, our method represents the appearance of a full object taking its geometry and volumetric heterogeneities into account. This is similar to a neural radiance field, but our representation works for an arbitrary distant lighting environment. In a sense, we present a version of neural precomputed radiance transfer that captures relighting of heterogeneous translucent objects. We use a multi‐layer perceptron (MLP) with skip connections to represent the appearance of an object as a function of spatial position, direction of observation, and direction of incidence. The latter is considered a directional light incident across the entire non‐self‐shadowed part of the object. We demonstrate the ability of our method to compactly store highly complex materials while having high accuracy when comparing to reference images of the represented object in unseen lighting environments. As compared with path tracing of a heterogeneous light scattering volume behind a refractive interface, our method more easily enables importance sampling of the directions of incidence and can be integrated into existing rendering frameworks while achieving interactive frame rates. 
    more » « less
  2. Reconstructing 3D objects in natural environments requires solving the ill-posed problem of geometry, spatially-varying material, and lighting estimation. As such, many approaches impractically constrain to a dark environment, use controlled lighting rigs, or use few handheld captures but suffer reduced quality. We develop a method that uses just two smartphone exposures captured in ambient lighting to reconstruct appearance more accurately and practically than baseline methods. Our insight is that we can use a flash/no-flash RGB-D pair to pose an inverse rendering problem using point lighting. This allows efficient differentiable rendering to optimize depth and normals from a good initialization and so also the simultaneous optimization of diffuse environment illumination and SVBRDF material. We find that this reduces diffuse albedo error by 25%, specular error by 46%, and normal error by 30% against single and paired-image baselines that use learning-based techniques. Given that our approach is practical for everyday solid objects, we enable photorealistic relighting for mobile photography and easier content creation for augmented reality. 
    more » « less
  3. We present a method to map 2D image observations of a scene to a persistent 3D scene representation, enabling novel view synthesis and disentangled representation of the movable and immovable components of the scene. Motivated by the bird’s-eye-view (BEV) representation commonly used in vision and robotics, we propose conditional neural groundplans, ground-aligned 2D feature grids, as persistent and memory-efficient scene representations. Our method is trained self-supervised from unlabeled multi-view observations using differentiable rendering, and learns to complete geometry and appearance of occluded regions. In addition, we show that we can leverage multi-view videos at training time to learn to separately reconstruct static and movable components of the scene from a single image at test time. The ability to separately reconstruct movable objects enables a variety of downstream tasks using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance-level segmentation, 3D bounding box prediction, and scene editing. This highlights the value of neural groundplans as a backbone for efficient 3D scene understanding models. 
    more » « less
  4. We propose an architecture for adaptive sensing of images by progressively measuring its wavelet coefficients. Our approach, commonly referred to as wavelet tree parsing, adaptively selects the specific wavelet coefficients to be sensed by modeling the children of dominant coefficients to be dominant themselves. A key challenge for practical implementation of this technique is that the wavelet patterns, especially at finer scales, occupy a tiny portion of the field of view and, hence, the resulting measurements have very poor light levels and signal-to-noise ratios (SNR). To address this, we propose a novel imaging architecture that uses a phase-only spatial light modulator as a freeform lens to concentrate a light source and create the wavelet patterns. This ensures that the SNR of measurements remain constant across different spatial scales. Using a lab prototype, we demonstrate successful reconstruction on a wide range of real scenes and show that concentrating illumination enables us to outperform non-adaptive techniques as well as adaptive techniques based on traditional projectors. 
    more » « less
  5. Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods). 
    more » « less