skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materials for Cell Surface Engineering
Abstract Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface‐modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell‐surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof‐of‐concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.  more » « less
Award ID(s):
2138064
PAR ID:
10441849
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical‐scale manufacture of highly secretory MSC products. 
    more » « less
  2. Abstract Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies. Graphical Abstract 
    more » « less
  3. Extensive damage to skeletal muscle tissue due to volumetric muscle loss (VML) is beyond the inherent regenerative capacity of the body, and results in permanent functional debilitation. Current clinical treatments fail to fully restore native muscle function. Recently, cell-based therapies have emerged as a promising approach to promote skeletal muscle regeneration following injury and/or disease. Stem cell populations, such as muscle stem cells, mesenchymal stem cells and induced pluripotent stem cells (iPSCs), have shown a promising capacity for muscle differentiation. Support cells, such as endothelial cells, nerve cells or immune cells, play a pivotal role in providing paracrine signaling cues for myogenesis, along with modulating the processes of inflammation, angiogenesis and innervation. The efficacy of cell therapies relies on the provision of instructive microenvironmental cues and appropriate intercellular interactions. This review describes the recent developments of cell-based therapies for the treatment of VML, with a focus on preclinical testing and future trends in the field. 
    more » « less
  4. Abstract Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense‐and‐respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life‐like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging TechnologiesBiology‐Inspired Nanomaterials > Lipid‐Based Structures 
    more » « less
  5. Abstract Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing ‘biohybrid’ and ‘all-living’ interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation. 
    more » « less