Flowering and fruiting phenology have been infrequently studied in the ever‐wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever‐wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long‐term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on‐site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community‐ and species‐level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September–November and fruiting peaked in March–April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near‐current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever‐wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region.
more » « less- Award ID(s):
- 1754668
- PAR ID:
- 10441885
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 9
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We provide data on flowering and fruiting phenology from an equatorial, ever-wet rainforest in eastern Ecuador, in Yasuni National Park. This is the first long-term study (18 years) of phenology in a diverse equatorial neotropical forest. Although the site is ever-wet, there is some seasonal variation in rainfall and irradiance. One major question was to determine whether the seasonal variation in climate was sufficient to drive seasonality in reproduction in this hyper-diverse forest. The study began in 2000 with various funding, and became an LTREB-funded project in 2006. We used twice monthly censuses of 200 traps to document phenology. Parts of >1000 species were identified in the traps in the 18 year period (ending early in 2018), including trees, shrubs, lianas and epiphytes. Parts identified included buds, flowers, mature fruits and mature seeds, and aborted, damaged and immature fruits and seeds. The project is on-going, and additional data will be added as it is processed.more » « less
-
We provide data on mean dry and wet mass of > 800 species from Yasuní National Forest, Ecuador collected between 2000 and 2014. Species include trees, shrubs, lianas and herbs. We also provide data on number of seeds per fruit for >1100 species compiled in 2016, along with information on fruit type and dispersal mode. Both of these data sets supplement previously published data on flowering and fruiting phenology from this equatorial, ever-wet rainforest in eastern Ecuador (Garwood et al. 2023). Garwood, N.C., S.J. Wright, R. Valencia, and M.R. Metz. 2023. Rainforest phenology: flower, fruit and seed production from biweekly collections of 200 traps in the Yasuní Forest Dynamics Plot, Ecuador, 2000-2018 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/5e6cb3d7ff741fd9d21965c4a904bc1f (Accessed 2024-03-27).more » « less
-
Abstract Fruiting, flowering, and leaf set patterns influence many aspects of tropical forest communities, but there are few long‐term studies examining potential drivers of these patterns, particularly in Africa. We evaluated a 15‐year dataset of tree phenology in Kibale National Park, Uganda, to identify abiotic predictors of fruit phenological patterns and discuss our findings in light of climate change. We quantified fruiting for 326 trees from 43 species and evaluated these patterns in relation to solar radiance, rainfall, and monthly temperature. We used time‐lagged variables based on seasonality in linear regression models to assess the effect of abiotic variables on the proportion of fruiting trees. Annual fruiting varied over 3.8‐fold, and inter‐annual variation in fruiting is associated with the extent of fruiting in the peak period, not variation in time of fruit set. While temperature and rainfall showed positive effects on fruiting, solar radiance in the two‐year period encompassing a given year and the previous year was the strongest predictor of fruiting. As solar irradiance was the strongest predictor of fruiting, the projected increase in rainfall associated with climate change, and coincident increase in cloud cover suggest that climate change will lead to a decrease in fruiting.
ENSO in the prior 24‐month period was also significantly associated with annual ripe fruit production, andENSO is also affected by climate change. Predicting changes in phenology demands understanding inter‐annual variation in fruit dynamics in light of potential abiotic drivers, patterns that will only emerge with long‐term data. -
Seedling demography data are provided in annual censuses of 600 seedling plots in an equatorial, ever-wet rainforest in eastern Ecuador, in Yasuní National Park. This long-term study uses standardized methodology from the Smithsonian ForestGEO network of plots, and in particular coordination with similar studies in Luquillo, Puerto Rico, and Barro Colorado Island, Panama. We address hypotheses about the maintenance of forest diversity and long-term variation, and link our data to companion studies of flowering and fruiting phenology and sapling and adult dynamics in the Yasuní Forest Dynamics 50-ha Plot. The project is ongoing, and additional data will be added as they are processed.more » « less
-
Abstract As the influence of climate change on tropical forests becomes apparent, more studies are needed to understand how changes in climatic variables such as rainfall are likely to affect tree phenology. Using a twelve‐year dataset (2005–2016), we studied the impact of seasonal rainfall patterns on the fruiting phenology of 69 tree species in the rain forest of southeastern Madagascar. We found that average annual rainfall in this region has increased by >800 mm (23%) during this period relative to that recorded for the previous 40 years and was highly variable both within and between years. Higher monthly measures of fruiting richness and the intensity of fruiting in our sample community were associated with significantly higher levels of rainfall. We also found that less rainfall during the dry season, but not the wet season, was associated with a significant shift toward later timing of peak richness and peak intensity of fruiting in the subsequent 12 months; however, this pattern was driven primarily by an extreme drought event that occurred during the study period. Longer time scales of phenology data are needed to see whether this pattern is consistent. Madagascar is expected to experience more extremes in rainfall and drought with increasing climate change. Thus, the linkages between variable precipitation and the fruiting phenology of forest trees will have important consequences for understanding plant reproduction and the ability of Madagascar's wildlife to cope with a changing climate.