Freshwater Salinization Syndrome (FSS) refers to the suite of physical, biological, and chemical impacts of salt ions on the degradation of natural, engineered, and social systems. Impacts of FSS on mobilization of chemical cocktails has been documented in streams and groundwater, but little research has focused on the effects of FSS on stormwater best management practices (BMPs) such as: constructed wetlands, bioswales, ponds, and bioretention. However emerging research suggests that stormwater BMPs may be both sources and sinks of contaminants, shifting seasonally with road salt applications. We conducted lab experiments to investigate this premise; replicate water and soil samples were collected from four distinct stormwater feature types (bioretention, bioswale, constructed wetlands and retention ponds) and were used in salt incubation experiments conducted under six different salinities with three different salts (NaCl, CaCl2, and MgCl2). Increased salt concentrations had profound effects on major and trace element mobilization, with all three salts showing significant positive relationships across nearly all elements analyzed. Across all sites, mean salt retention was 34%, 28%, and 26% for Na+, Mg2+and Ca2+respectively, and there were significant differences among stormwater BMPs. Salt type showed preferential mobilization of certain elements. NaCl mobilized Cu, a potent toxicant to aquatic biota, at rates over an order of magnitude greater than both CaCl2and MgCl2. Stormwater BMP type also had a significant effect on elemental mobilization, with ponds mobilizing significantly more Mn than other sites. However, salt concentration and salt type consistently had significant effects on mean concentrations of elements mobilized across all stormwater BMPs (
Freshwater ecosystems are being exposed to increasing salinisation, often because of pollution from road deicing salts, which is becoming more widely acknowledged. To address this issue, municipalities are turning towards the sodium salt alternatives of CaCl2and MgCl2, which are marketed as being safer for the environment. However, research into the actual safety of these salts on aquatic plants is lacking. We investigated the effects of the most common road salt (NaCl) and two alternatives (MgCl2and CaCl2) on the productivity of a common freshwater plant (i.e., We discovered that NaCl and CaCl2altered these measures of plant metabolism, but MgCl2had no effects. We also observed instances of acclimation (i.e. salt effects after 1 week that disappeared after 3 weeks) and lag effects (i.e. no salt effect after 1 week, but salt effects after 3 weeks). These impacts are likely to be the results of plant responses to salt at the cell and molecular levels, including short‐ and long‐term changes in photosynthetic pigments. Therefore, the plant responses were salt‐specific, with instances of plant acclimation and lag effects. This appears to be the first study of net primary productivity, respiration, and gross primary productivity in freshwater plants across a range of different salts, and it highlights how freshwater salinisation can have substantial effects on plant productivity. These effects will probably have an impact on the growth of macrophytes, which play key ecological roles in aquatic ecosystems.
- PAR ID:
- 10441886
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Freshwater Biology
- Volume:
- 68
- Issue:
- 11
- ISSN:
- 0046-5070
- Format(s):
- Medium: X Size: p. 1952-1962
- Size(s):
- p. 1952-1962
- Sponsoring Org:
- National Science Foundation
More Like this
-
p < 0.05), suggesting that processes such as ion exchange mobilize metals mobilize metals and salt ions regardless of BMP type. Our results suggest that decisions regarding the amounts and types of salts used as deicers can have significant effects on reducing contaminant mobilization to freshwater ecosystems. -
Summary Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown.
Here, we use a trait‐based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity.
Allocating leaf area to maximize carbon gain increased productivity with high CO2, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.
Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.
-
Summary Genetic mutants defective in stimulus‐induced Ca2+increases have been gradually isolated, allowing the identification of cell‐surface sensors/receptors, such as the osmosensor OSCA1. However, determining the Ca2+‐signaling specificity to various stimuli in these mutants remains a challenge. For instance, less is known about the exact selectivity between osmotic and ionic stresses in the
osca1 mutant.Here, we have developed a method to distinguish the osmotic and ionic effects by analyzing Ca2+increases, and demonstrated that
osca1 is impaired primarily in Ca2+increases induced by the osmotic but not ionic stress.We recorded Ca2+increases induced by sorbitol (osmotic effect, OE) and NaCl/CaCl2(OE + ionic effect, IE) in
Arabidopsis wild‐type andosca1 seedlings. We assumed the NaCl/CaCl2total effect (TE) = OE + IE, then developed procedures for Ca2+imaging, image analysis and mathematic fitting/modeling, and foundosca1 defects mainly in OE.The osmotic specificity of
osca1 suggests that osmotic and ionic perceptions are independent. The precise estimation of these two stress effects is applicable not only to new Ca2+‐signaling mutants with distinct stimulus specificity but also the complex Ca2+signaling crosstalk among multiple concurrent stresses that occur naturally, and will enable us to specifically fine tune multiple signal pathways to improve crop yields. -
Silicon is an extremely important technological material, but the current industrial production of silicon by carbothermic reduction of SiO₂ is energy intensive and generates CO₂ emission. Here we developed a new and more sustainable method to produce silicon nanowires in bulk quantities via direct electrochemical reduction of CaSiO₃, an abundant and inexpensive silicon source soluble in molten salts, at a low temperature of 650 ⁰C by using low melting point ternary molten salts CaCl₂-MgCl₂-NaCl, which still retains high CaSiO₃ solubility, and a supporting electrolyte of CaO, which facilitates the transport of O²¯ anions, drastically improves the reaction kinetics and enables the electrolysis at low temperatures. The Si nanowire product can be used as high-capacity Li-ion battery anode materials with excellent cycling performance. This practical strategy at lower temperatures can be applied to other molten salt systems and also promising for waste glass and coal ash recycling.more » « less
-
Abstract This work reports the process of sensor development, optimization, and characterization before the transition to on-body measurements can be made. Sensors using lactate oxidase as a sensing mechanism and tetrathiafulvalene as a mediator were optimized for sporting applications. Optimized sensors show linear range up to 24 mM lactate and sensitivity of 4.8
μ A/mM which normalizes to 68μ A*cm−2/mM when accounting for surface area of the sensor. The optimized sensors were characterized 3 different ways: using commercially available reference and counter electrodes, using printed reference and counter electrodes, and using a printed reference electrode with no counter electrode. Sensors intended for measuring sweat must be selective in the presence of sweat constituents. Thus, in addition to traditional characterization in pH 7.0 buffer, we characterized sensor performance in solutions intended to approximate sweat. Sensor performance in pH 7.0 buffer solution was not reflective of sensor performance in artificial sweat, indicating that further characterization is necessary between sensor measurement in pH 7.0 buffer and on-body measurements. Furthermore, we performed enzyme activity measurements and sensor measurements concurrently in five different salts individually, finding that while NH4Cl and MgCl2do not affect enzyme activity or sensor performance in physiologically relevant ranges of salt concentration, NaCl concentration or KCl concentration decreases enzyme activity and sensor current. On the other hand, CaCl2induced a nonlinear change in sensor performance and enzyme activity with increasing salt concentration.