skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Porous Crystalline Nitrone‐Linked Covalent Organic Framework**
Abstract Herein, we report the synthesis of a nitrone‐linked covalent organic framework, COF‐115, by combiningN,N′,N′,N′′′‐(ethene‐1, 1, 2, 2‐tetrayltetrakis(benzene‐4, 1‐diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid‐state13C multi cross‐polarization magic angle spinning NMR spectroscopy of the13C‐isotope‐labeled COF‐115 and Fourier‐transform infrared spectroscopy. The permanent porosity of COF‐115 was evaluated through low‐pressure N2, CO2, and H2sorption experiments. Water vapor and carbon dioxide sorption analysis of COF‐115 and the isoreticular imine‐linked COF indicated a superior potential ofN‐oxide‐based porous materials for atmospheric water harvesting and CO2capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF‐115 to the associated amide‐linked material was successfully demonstrated.  more » « less
Award ID(s):
2223442 1124244
PAR ID:
10441892
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Covalent organic frameworks linked by carbon‐carbon double bonds (C=C COFs) are an emerging class of crystalline, porous, and conjugated polymeric materials with potential applications in organic electronics, photocatalysis, and energy storage. Despite the rapidly growing interest in sp2carbon‐conjugated COFs, only a small number of closely related condensation reactions have been successfully employed for their synthesis to date. Herein, we report the first example of a C=C COF, CORN‐COF‐1 (CORN=Cornell University), prepared byN‐heterocyclic carbene (NHC) dimerization. In‐depth characterization reveals that CORN‐COF‐1 possesses a two‐dimensional layered structure and hexagonal guest‐accessible pores decorated with a high density of strongly reducing tetraazafulvalene linkages. Exposure of CORN‐COF‐1 to tetracyanoethylene (TCNE,E1/2=0.13 V and −0.87 V vs. SCE) oxidizes the COF and encapsulates the radical anion TCNE⋅and the dianion TCNE2−as guest molecules, as confirmed by spectroscopic and magnetic analysis. Notably, the reactive TCNE⋅radical anion, which generally dimerizes in the solid state, is uniquely stabilized within the pores of CORN‐COF‐1. Overall, our findings broaden the toolbox of reactions available for the synthesis of redox‐active C=C COFs, paving the way for the design of novel materials. 
    more » « less
  2. Abstract The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) ofn‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn‐alkanes (nC19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn‐alkanes (nC29andnC31; plant waxes) during the peak of the PETM. Although δ13Cn‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn‐C19and δ13Cn‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedpCO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln‐alkanes in the Arctic region. 
    more » « less
  3. Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry. 
    more » « less
  4. Abstract The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations. 
    more » « less
  5. Summary Increasing atmospheric CO2is changing the dynamics of tropical savanna vegetation. C3trees and grasses are known to experience CO2fertilization, whereas responses to CO2by C4grasses are more ambiguous.Here, we sample stable carbon isotope trends in herbarium collections of South African C4and C3grasses to reconstruct13C discrimination.We found that C3grasses showed no trends in13C discrimination over the past century but that C4grasses increased their13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2rather than to trends in rainfall climatology or temperature.Combined with previously published evidence that grass biomass has increased in C4‐dominated savannas, these trends suggest that increasing water‐use efficiency due to CO2fertilization may be changing C4plant–water relations. CO2fertilization of C4grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems. 
    more » « less