Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS and HOOMD-blue.
more »
« less
Evolution of artificial intelligence for application in contemporary materials science
Abstract Contemporary materials science has seen an increasing application of various artificial intelligence techniques in an attempt to accelerate the materials discovery process using forward modeling for predictive analysis and inverse modeling for optimization and design. Over the last decade or so, the increasing availability of computational power and large materials datasets has led to a continuous evolution in the complexity of the techniques used to advance the frontier. In this Review, we provide a high-level overview of the evolution of artificial intelligence in contemporary materials science for the task of materials property prediction in forward modeling. Each stage of evolution is accompanied by an outline of some of the commonly used methodologies and applications. We conclude the work by providing potential future ideas for further development of artificial intelligence in materials science to facilitate the discovery, design, and deployment workflow. Graphical abstract
more »
« less
- Award ID(s):
- 2053929
- PAR ID:
- 10441905
- Publisher / Repository:
- Cambridge University Press (CUP)
- Date Published:
- Journal Name:
- MRS Communications
- Volume:
- 13
- Issue:
- 5
- ISSN:
- 2159-6867
- Format(s):
- Medium: X Size: p. 754-763
- Size(s):
- p. 754-763
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
AbstractFor over three decades, the materials tetrahedron has captured the essence of materials science and engineering with its interdependent elements of processing, structure, properties, and performance. As modern computational and statistical techniques usher in a new paradigm of data-intensive scientific research and discovery, the rate at which the field of materials science and engineering capitalizes on these advances hinges on collaboration between numerous stakeholders. Here, we provide a contemporary extension to the classic materials tetrahedron with a dual framework—adapted from the concept of a “digital twin”—which offers a nexus joining materials science and information science. We believe this high-level framework, the materials–information twin tetrahedra (MITT), will provide stakeholders with a platform to contextualize, translate, and direct efforts in the pursuit of propelling materials science and technology forward. Impact statementThis article provides a contemporary reimagination of the classic materials tetrahedron by augmenting it with parallel notions from information science. Since the materials tetrahedron (processing, structure, properties, performance) made its first debut, advances in computational and informational tools have transformed the landscape and outlook of materials research and development. Drawing inspiration from the notion of a digital twin, the materials–information twin tetrahedra (MITT) framework captures a holistic perspective of materials science and engineering in the presence of modern digital tools and infrastructures. This high-level framework incorporates sustainability and FAIR data principles (Findable, Accessible, Interoperable, Reusable)—factors that recognize how systems impact and interact with other systems—in addition to the data and information flows that play a pivotal role in knowledge generation. The goal of the MITT framework is to give stakeholders from academia, industry, and government a communication tool for focusing efforts around the design, development, and deployment of materials in the years ahead. Graphic abstractmore » « less
-
Abstract Recent progress in deep learning has significantly impacted materials science, leading to accelerated material discovery and innovation. ElemNet, a deep neural network model that predicts formation energy from elemental compositions, exemplifies the application of deep learning techniques in this field. However, the “black-box” nature of deep learning models often raises concerns about their interpretability and reliability. In this study, we propose XElemNet to explore the interpretability of ElemNet by applying a series of explainable artificial intelligence (XAI) techniques, focusing on post-hoc analysis and model transparency. The experiments with artificial binary datasets reveal ElemNet’s effectiveness in predicting convex hulls of element-pair systems across periodic table groups, indicating its capability to effectively discern elemental interactions in most cases. Additionally, feature importance analysis within ElemNet highlights alignment with chemical properties of elements such as reactivity and electronegativity. XElemNet provides insights into the strengths and limitations of ElemNet and offers a potential pathway for explaining other deep learning models in materials science.more » « less
-
Abstract Artificial intelligence in the workplace is becoming increasingly common. These tools are sometimes used to aid users in performing their task, for example, when an artificial intelligence tool assists a radiologist in their search for abnormalities in radiographic images. The use of artificial intelligence brings a wealth of benefits, such as increasing the efficiency and efficacy of performance. However, little research has been conducted to determine how the use of artificial intelligence assistants might affect the user’s cognitive skills. In this theoretical perspective, we discuss how artificial intelligence assistants might accelerate skill decay among experts and hinder skill acquisition among learners. Further, we discuss how AI assistants might also prevent experts and learners from recognizing these deleterious effects. We then discuss the types of questions: use-inspired basic cognitive researchers, applied researchers, and computer science researchers should seek to answer. We conclude that multidisciplinary research from use-inspired basic cognitive research, domain-specific applied research, and technical research (e.g., human factors research, computer science research) is needed to (a) understand these potential consequences, (b) design artificial intelligence systems to mitigate these impacts, and (c) develop training and use protocols to prevent negative impacts on users’ cognitive skills. Only by answering these questions from multidisciplinary perspectives can we harness the benefits of artificial intelligence in the workplace while preventing negative impacts on users’ cognitive skills.more » « less
-
Abstract Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware.more » « less
An official website of the United States government
