Abstract Water temperatures in mountain streams are likely to rise under future climate change, with negative impacts on ecosystems and water quality. However, it is difficult to predict which streams are most vulnerable due to sparse historical records of mountain stream temperatures as well as complex interactions between snowpack, groundwater, streamflow and water temperature. Minimum flow volumes are a potentially useful proxy for stream temperature, since daily streamflow records are much more common. We confirmed that there is a strong inverse relationship between annual low flows and peak water temperature using observed data from unimpaired streams throughout the montane regions of the United States' west coast. We then used linear models to explore the relationships between snowpack, potential evapotranspiration and other climate‐related variables with annual low flow volumes and peak water temperatures. We also incorporated previous years' flow volumes into these models to account for groundwater carryover from year to year. We found that annual peak snowpack water storage is a strong predictor of summer low flows in the more arid watersheds studied. This relationship is mediated by atmospheric water demand and carryover subsurface water storage from previous years, such that multi‐year droughts with high evapotranspiration lead to especially low flow volumes. We conclude that watershed management to help retain snow and increase baseflows may help counteract some of the streamflow temperature rises expected from a warming climate, especially in arid watersheds.
more »
« less
Leveraging Groundwater Dynamics to Improve Predictions of Summer Low‐Flow Discharges
Abstract Summer streamflow predictions are critical for managing water resources; however, warming‐induced shifts from snow to rain regimes impact low‐flow predictive models. Additionally, reductions in snowpack drive earlier peak flows and lower summer flows across the western United States increasing reliance on groundwater for maintaining summer streamflow. However, it remains poorly understood how groundwater contributions vary interannually. We quantify recession limb groundwater (RLGW), defined as the proportional groundwater contribution to the stream during the period between peak stream flow and low flow, to predict summer low flows across three diverse western US watersheds. We ask (a) how do snow and rain dynamics influence interannual variations of RLGW contributions and summer low flows?; (b) which watershed attributes impact the effectiveness of RLGW as a predictor of summer low flows? Linear models reveal that RLGW is a strong predictor of low flows across all sites and drastically improves low‐flow prediction compared to snow metrics at a rain‐dominated site. Results suggest that strength of RLGW control on summer low flows may be mediated by subsurface storage. Subsurface storage can be divided into dynamic (i.e., variability saturated) and deep (i.e., permanently saturated) components, and we hypothesize that interannual variability in dynamic storage contribution to streamflow drives RLGW variability. In systems with a higher proportion of dynamic storage, RLGW is a better predictor of summer low flow because the stream is more responsive to dynamic storage contributions compared to deep‐storage‐dominated systems. Overall, including RLGW improved low‐flow prediction across diverse watersheds.
more »
« less
- PAR ID:
- 10441913
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 59
- Issue:
- 8
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding how diverse headwater streams contribute water downstream is critical for accurate modelling of seasonal flow dynamics in larger systems. This study investigated how headwater catchments, with diverse subsurface storage, influence downstream flows within Lookout Creek—a 62 km2, 5th‐order catchment in the rain‐snow transition zone in western Oregon, USA. We analysed one year of hydrometric and water stable isotope data collected at 10 stream locations, complemented by a decade of precipitation isotopic data. As expected, isotopic data revealed that most of the streamflow was sourced from large fall and winter storms. Generally, stream isotope ratios decrease with elevation. However, some streams had higher isotopic values than expected, reflecting the influence of isotopically heavy storms and relatively low storage. Other streams that tended to have low flow variability in response to precipitation inputs had lower isotopic values, indicating higher elevation water sources than their topographic watershed boundaries. Both hydrometric data and water isotope‐based end‐member mixing models suggest storage differences among headwater catchments influenced the seasonal water contributions from tributaries. Most notably, the contributions of Cold and Longer Creeks, which occupy less than 10% of the Lookout Creek drainage area, sustain up to 50% of the streamflow in the summer. These catchments have high storage and high groundwater contributions, as evidenced by flat flow duration curves. Finally, our data suggest that geologic variability and geomorphic complexity (presence of earthflows and landslides) can be indicators of storage that dramatically influence water movement through the critical zone, the variation in streamflow, and the response of streams to precipitation events. Heterogeneity in headwater catchment storage is key to understanding flow dynamics in mountainous regions and the response of streams to changes in climate and other disturbances.more » « less
-
ABSTRACT Hydrologic connectivity is defined as the connection among stores of water within a watershed and controls the flux of water and solutes from the subsurface to the stream. Hydrologic connectivity is difficult to quantify because it is goverened by heterogeniety in subsurface storage and permeability and responds to seasonal changes in precipitation inputs and subsurface moisture conditions. How interannual climate variability impacts hydrologic connectivity, and thus stream flow generation and chemistry, remains unclear. Using a rare, four‐year synoptic stream chemistry dataset, we evaluated shifts in stream chemistry and stream flow source of Coal Creek, a montane, headwater tributary of the Upper Colorado River. We leveraged compositional principal component analysis and end‐member mixing to evaluate how seasonal and interannual variation in subsurface moisture conditions impacts stream chemistry. Overall, three main findings emerged from this work. First, three geochemically distinct end members were identified that constrained stream flow chemistry: reach inflows, and quick and slow flow groundwater contributions. Reach inflows were impacted by historic base and precious metal mine inputs. Bedrock fractures facilitated much of the transport of quick flow groundwater and higher‐storage subsurface features (e.g., alluvial fans) facilitated the transport of slow flow groundwater. Second, the contributions of different end members to the stream changed over the summer. In early summer, stream flow was composed of all three end members, while in late summer, it was composed predominantly of reach inflows and slow flow groundwater. Finally, we observed minimal differences in proportional composition in stream chemistry across all four years, indicating seasonal variability in subsurface moisture and spatial heterogeneity in landscape and geologic features had a greater influence than interannual climate fluctuation on hydrologic connectivity and stream water chemistry. These findings indicate that mechanisms controlling solute transport (e.g., hydrologic connectivity and flow path activation) may be resilient (i.e., able to rebound after perturbations) to predicted increases in climate variability. By establishing a framework for assessing compositional stream chemistry across variable hydrologic and subsurface moisture conditions, our study offers a method to evaluate watershed biogeochemical resilience to variations in hydrometeorological conditions.more » « less
-
ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies.more » « less
-
Abstract Linking quickflow response to subsurface state can improve our understanding of runoff processes that drive emergent catchment behaviour. We investigated the formation of non‐linear quickflows in three forested headwater catchments and also explored unsaturated and saturated storage dynamics, and likely runoff generation mechanisms that contributed to threshold formation. Our analyses focused on two reference watersheds at the Coweeta Hydrologic Laboratory (CHL) in western North Carolina, USA, and one reference watershed at the Susquehanna Shale Hills Critical Zone Observatory (SHW) in Central Pennsylvania, USA, with available hourly soil moisture, groundwater, streamflow, and precipitation time series over several years. Our study objectives were to characterise (a) non‐linear runoff response as a function of storm characteristics and antecedent conditions, (b) the critical levels of shallow unsaturated and saturated storage that lead to hourly flow response, and (c) runoff mechanisms contributing to rapidly increasing quickflow using measurements of soil moisture and groundwater. We found that maximum hourly rainfall did not significantly contribute to quickflow production in our sites, in contrast to prior studies, due to highly conductive forest soils. Soil moisture and groundwater dynamics measured in hydrologically representative areas of the hillslope showed that variable subsurface states could contribute to non‐linear runoff behaviour. Quickflow generation in watersheds at CHL were dominated by both saturated and unsaturated pathways, but the relative contributions of each pathway varied between catchments. In contrast, quickflow was almost entirely related to groundwater fluctuations at SHW. We showed that co‐located measurements of soil moisture and groundwater supplement threshold analyses providing stronger prediction and understanding of quickflow generation and indicate dominant runoff processes.more » « less
An official website of the United States government
