skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of pejus and pessimum zone salinity stress on gill proteome networks and energy homeostasis in Oreochromis mossambicus
Abstract Salinity tolerance in fish involves a suite of physiological changes, but a cohesive theory leading to a mechanistic understanding at the organismal level is lacking. To examine the potential of adapting energy homeostasis theory in the context of salinity stress in teleost fish,Oreochromis mossambicuswere acclimated to hypersalinity at multiple rates and durations to determine salinity ranges of tolerance and resistance. Over 3000 proteins were quantified simultaneously to analyze molecular phenotypes associated with hypersalinity. A species‐ and tissue‐specific data‐independent acquisition (DIA) assay library of MSMS spectra was created. Protein networks representing complex molecular phenotypes associated with salinity acclimation were generated.O. mossambicushas a wide “zone of resistance” from 75 g/kg salinity to 120 g/kg. Crossing into the zone of resistance resulted in marked phenotypic changes including blood osmolality over 400 mOsm/kg, reduced body condition, and cessation of feeding. Protein networks impacted by hypersalinity consist of electron transport chain (ETC) proteins and specific osmoregulatory proteins. Cytoskeletal, cell adhesion, and extracellular matrix proteins are enriched in networks that are sensitive to the critical salinity threshold. These network analyses identify specific proteome changes that are associated with distinct zones described by energy homeostasis theory and distinguish them from general hypersalinity‐induced proteome changes.  more » « less
Award ID(s):
2209383
PAR ID:
10441971
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
PROTEOMICS
Volume:
24
Issue:
1-2
ISSN:
1615-9853
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acclimations of Oreochromis mossambicus to elevated salinity were conducted with multiple rates of salinity increase and duration of exposure to determine the rate-independent maximum salinity limit and the incipient lethal salinity. A data-independent acquisition (DIA) assay library was created for quantitative analysis of over 3000 gill proteins simultaneously in treatments representative of important key zones in the salinity level/duration landscape. From these DIA data, protein networks that represent complex molecular phenotypes associated with salinity acclimation were generated. Acclimations of Oreochromis mossambicus to elevated salinity were conducted with multiple rates of salinity increase and duration of exposure to determine the rate-independent maximum salinity limit and the incipient lethal salinity. A data-independent acquisition (DIA) assay library was created for quantitative analysis of over 3000 gill proteins simultaneously in treatments representative of important key zones in the salinity level/duration landscape. From these DIA data, protein networks that represent complex molecular phenotypes associated with salinity acclimation were generated. Protein fold change (FC) and organismal level performance indicators of salinity tolerance were then correlated. Gill protein networks impacted at extreme salinity levels both above and below the incipient lethal limit include increased energy metabolism, especially upregulation of electron transport chain complex proteins, and significant downregulation of a previously uncharacterized protein which bears strong amino acid sequence similarity to fucolectin. Proteins networks strongly impacted by crossing into the zone of resistance include cell adhesion and extracellular matrix regulation. 
    more » « less
  2. Synopsis The gill proteome of threespine sticklebacks (Gasterosteus aculeatus) differs greatly in populations that inhabit diverse environments characterized by different temperature, salinity, food availability, parasites, and other parameters. To assess the contribution of a specific environmental parameter to such differences it is necessary to isolate its effects from those of other parameters. In this study the effect of environmental salinity on the gill proteome of G. aculeatus was isolated in controlled mesocosm experiments. Salinity-dependent changes in the gill proteome were analyzed by Liquid chromatography/Tandem mass spectrometry data-independent acquisition (DIA) and Skyline. Relative abundances of 1691 proteins representing the molecular phenotype of stickleback gills were quantified using previously developed MSMS spectral and assay libraries in combination with DIA quantitative proteomics. Non-directional stress responses were distinguished from osmoregulatory protein abundance changes by their consistent occurrence during both hypo- and hyper-osmotic salinity stress in six separate mesocosm experiments. If the abundance of a protein was consistently regulated in opposite directions by hyper- versus hypo-osmotic salinity stress, then it was considered an osmoregulatory protein. In contrast, if protein abundance was consistently increased irrespective of whether salinity was increased or decreased, then it was considered a non-directional response protein. KEGG pathway analysis revealed that the salivary secretion, inositol phosphate metabolism, valine, leucine, and isoleucine degradation, citrate cycle, oxidative phosphorylation, and corresponding endocrine and extracellular signaling pathways contain most of the osmoregulatory gill proteins whose abundance is directly proportional to environmental salinity. Most proteins that were inversely correlated with salinity map to KEGG pathways that represent proteostasis, immunity, and related intracellular signaling processes. Non-directional stress response proteins represent fatty and amino acid degradation, purine metabolism, focal adhesion, mRNA surveillance, phagosome, endocytosis, and associated intracellular signaling KEGG pathways. These results demonstrate that G. aculeatus responds to salinity changes by adjusting osmoregulatory mechanisms that are distinct from transient non-directional stress responses to control compatible osmolyte synthesis, transepithelial ion transport, and oxidative energy metabolism. Furthermore, this study establishes salinity as a key factor for causing the regulation of numerous proteins and KEGG pathways with established functions in proteostasis, immunity, and tissue remodeling. We conclude that the corresponding osmoregulatory gill proteins and KEGG pathways represent molecular phenotypes that promote transepithelial ion transport, cellular osmoregulation, and gill epithelial remodeling to adjust gill function to environmental salinity. 
    more » « less
  3. Abstract This study establishes the copper tolerance range of the colonial marine tunicateBotryllus schlosseri. Furthermore, quantitative organismal phenotyping and quantitative proteomics were combined to characterize theB. schlosseriresponse to, and recovery from, acute copper exposure stress. Changes in the area ofB. schlossericolony systems and pigmentation provided sensitive, dose-dependent markers of exposure to, and recovery from, copper stress. Comprehensive quantitative proteomics using consistent data-independent acquisition (DIA) assay libraries revealed activation of detoxification, oxidative stress, and immune pathways during exposure to copper stress. In addition, quantitative proteomics uncovered enrichment of tissue remodeling and proliferative signaling pathways during recovery from copper stress. We identified 35 proteins whose expression closely mirrored phenotypic changes observed at the colonial system level. This specific proteome signature represents a comprehensive molecular underpinning of the organismal response ofB. schlosserito copper stress. In conclusion, this study establishes copper tolerance ranges of the invasive colonial tunicateB. schlosseriand explains the molecular underpinnings of stress-induced organismal phenotypes by identifying corresponding proteome signatures and their associated functional enrichments. Moreover, identification of copper concentrations that are stressful and highly disruptive on the molecular phenotype, yet readily recoverable from, lays a critical foundation for future studies directed at stress-induced adaptation and evolutionary trajectories of marine invertebrates in changing and novel environments. 
    more » « less
  4. ABSTRACT Pistachio thrives in semi‐arid and arid environments and is highly adaptable to various abiotic stresses. However, soil salinization significantly threatens productivity, leading to considerable osmotic and ionic stress for these plants. Roots are the primary sites for stress perception and response; however, they remain understudied in woody crops, such asPistachio. This study examines the alterations in root protein expression and metabolic pathways in response to sodium chloride‐induced salt stress through biochemical and proteomic analyses. One‐year‐old pistachio rootstocks were treated with four different saline water regimes over a 100‐day period, and the total proteins were isolated from these samples. Over 1600 protein identifiers were detected, with comparative analysis revealing 245 proteins that were more abundant and 190 that were less abundant across three stress levels. Key pathways associated with stress tolerance, such as protein modification, folding, and heat shock protein (HSP) protection, were upregulated. An increase in secondary metabolites played a crucial role in detoxification. As salt stress intensified, the abundance of trafficking proteins increased, enhancing transporter activities. Active signaling pathways were observed at lower stress levels, while structural proteins became more critical at higher stress levels for maintaining cell membrane integrity. This cultivar exhibited enhanced kinase activities that regulate lipid and carbohydrate metabolism, thereby aiding in ion homeostasis and maintaining redox balance. The protein interaction network, mapped to orthologous proteins inArabidopsis thaliana, revealed clusters associated with cytosolic, carbohydrate, and amino acid metabolism contributing to salinity stress tolerance. The validation of proteomic data was performed by assessing corresponding changes in transcript levels. The study expands upon previous work by providing a comprehensive proteomic map of UCB‐1 pistachio rootstock across multiple salinity levels. The findings have practical implications for developing more resilient cultivars, supporting sustainable pistachio production in regions prone to salinity. 
    more » « less
  5. Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia ( Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (p < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (p<0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO induced activation of the MIB pathway. 
    more » « less