skip to main content


Title: Xylem structure and hydraulic function in roots and stems of chaparral shrub species from high and low elevation in the Sierra Nevada, California
Abstract

Xylem structure and hydraulics were compared between individuals at lower and upper elevation distribution limits for five chaparral shrub species along a steep transect in the southern Sierra Nevada, California, USA. Higher‐elevation plants experienced frequent winter freeze–thaw events and increased precipitation. We hypothesized that environmental differences would lead to xylem trait differences between high and low elevations, but predictions were complicated because both water stress (low elevation) and freeze–thaw events (high elevation) may select for similar traits, such as narrow vessel diameter. We found significant changes in the ratio of stem xylem area to leaf area (Huber value) between elevations, with more xylem area required to support leaves at low elevations. Co‐occurring species significantly differed in their xylem traits, suggesting diverse strategies to cope with the highly seasonal environment of this Mediterranean‐type climate region. Roots were more hydraulically efficient and more vulnerable to embolism relative to stems, potentially due to roots being buffered from freeze–thaw stress, which allows them to maintain wider diameter vessels. Knowledge of the structure and function of both roots and stems is likely important in understanding whole‐plant response to environmental gradients.

 
more » « less
PAR ID:
10442022
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Physiologia Plantarum
Volume:
175
Issue:
4
ISSN:
0031-9317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.

     
    more » « less
  2. Abstract

    The coordination of traits from individual organs to whole plants is under strong selection because of environmental constraints on resource acquisition and use. However, the tight coordination of traits may provide underlying mechanisms of how locally adapted plant populations can become maladapted because of climate change.

    To better understand local adaptation in intraspecific trait coordination, we studied trait variability in the widely distributed foundation tree species,Populus fremontiiusing a common garden near the mid‐elevational point of this species distribution. We examined 28 traits encompassing four spectra: phenology, leaf economic spectrum (LES), whole‐tree architecture (Corner's Rule) and wood economic spectrum (WES).

    Based on adaptive syndrome theory, we hypothesized that trait expression would be coordinated among and within trait spectra, reflecting local adaptation to either exposure to freeze‐thaw conditions in genotypes sourced from high‐elevation populations or exposure to extreme thermal stress in genotypes sourced from low‐elevation populations.

    High‐elevation genotypes expressed traits within the phenology and WES that limit frost exposure and tissue damage. Specifically, genotypes sourced from high elevations had later mean budburst, earlier mean budset, higher wood densities, higher bark fractions and smaller xylem vessels than their low‐elevation counterparts. Conversely, genotypes sourced from low elevations expressed traits within the LES that prioritized hydraulic efficiency and canopy thermal regulation to cope with extreme heat exposure, including 40% smaller leaf areas, 67% higher stomatal densities and 34% higher mean theoretical maximum stomatal conductance. Low‐elevation genotypes also expressed a lower stomatal control over leaf water potentials that subsequently dropped to pressures that could induce hydraulic failure.

    Synthesis. Our results suggest thatPopulus fremontiiexpresses a high degree of coordination across multiple trait spectra to adapt to local climate constraints on photosynthetic gas exchange, growth and survival. These results, therefore, increase our mechanistic understanding of local adaptation and the potential effects of climate change that in turn, improves our capacity to identify genotypes that are best suited for future restoration efforts.

     
    more » « less
  3. Abstract

    Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.

    We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.

    Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.

    Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem.

     
    more » « less
  4. Abstract

    Two formerly broadly distributed woody Atriplex species now occur as fragmented populations across a range of microhabitats in the San Joaquin Valley Desert, southern California. We hypothesized that A. lentiformis and A. polycarpa exhibit inter- and intra-specific differences in their leaf and stem structural and functional traits corresponding with differences in soil salinity and aridity. Water potential, xylem structure and function and leaf traits were compared between three populations of A. lentiformis and four populations of A. polycarpa. The two species significantly differed in their xylem traits, with A. lentiformis displaying lower xylem density, wider mean and maximum vessel diameters and higher hydraulic conductivity (Ks). They also differed in their leaf traits, such that A. lentiformis had larger leaves with higher specific leaf area (SLA) than A. polycarpa. Significant intra-specific differences occurred among leaf traits (leaf area, SLA) in A. lentiformis populations. In contrast, populations varied in their stem xylem structural traits (mean vessel wall thickness, mean vessel diameter, maximum vessel length) among A. polycarpa populations. Many of these differences were associated with soil salinity in A. lentiformis, and with minimum seasonal water potential in A. polycarpa. Overall, both saltbush species showed high intra- and inter-specific trait variation. This could be a critical consideration in understanding the evolution of these native species and has important implications for their conservation and restoration.

     
    more » « less
  5. Abstract

    Warmer winters with less snowfall are increasing the frequency of soil freeze–thaw cycles across temperate regions. Soil microbial responses to freeze–thaw cycles vary and some of this variation may be explained by microbial conditioning to prior winter conditions, yet such linkages remain largely unexplored. We investigated how differences in temperature history influenced microbial community composition and activity in response to freeze–thaw cycles.

    We collected soil microbial communities that developed under colder (high elevation) and warmer (low elevation) temperature regimes in spruce‐fir forests, then added each of these soil microbial communities to a sterile bulk‐soil in a laboratory microcosm experiment. The inoculated high‐elevation cold and low‐elevation warm microcosms were subjected to diurnal freeze–thaw cycles or constant above‐freezing temperature for 9 days. Then, all microcosms were subjected to a 7‐day above‐freezing recovery period.

    Overall, we found that the high‐elevation cold community had, relative to the low‐elevation warm community, a smaller reduction in microbial respiration (CO2flux) during freeze–thaw cycles. Further, the high‐elevation cold community, on average, experienced lower freeze–thaw‐induced bacterial mortality than the warm community and may have partly acclimated to freeze–thaw cycles via increased lipid membrane fluidity. Respiration of both microbial communities quickly recovered following the end of the freeze–thaw treatment period and there were no changes in soil extractable carbon or nitrogen.

    Our results provide evidence that past soil temperature conditions may influence the responses of soil microbial communities to freeze–thaw cycles. The microbial community that developed under a colder temperature regime was more tolerant of freeze–thaw cycles than the community that developed under a warmer temperature regime, although both communities displayed some level of resilience. Taken together, our data suggest that microbial communities conditioned to less extreme winter soil temperatures may be most vulnerable to rapid changes in freeze–thaw regimes as winters warm, but they also may be able to quickly recover if mortality is low.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less