Abstract Enantioselective diamination of alkenes represents one of the most straightforward methods to access enantioenriched, vicinal diamines, which are not only frequently encountered in biologically active compounds, but also have broad applications in asymmetric synthesis. Although the analogous dihydroxylation of olefins is well-established, the development of enantioselective olefin diamination lags far behind. Nevertheless, several successful methods have been developed that operate by different reaction mechanisms, including a cycloaddition pathway, a two-electron redox pathway, and a radical pathway. This short review summarizes recent advances and identifies limitations, with the aim of inspiring further developments in this area. 1 Introduction 2 Cycloaddition Pathway 3 Two-Electron Redox Pathway 3.1 Pd(0)/Pd(II) Diamination 3.2 Pd(II)/Pd(IV) Diamination 3.3 I(I)/I(III) Diamination 3.4 Se(II)/Se(IV) Diamination 4 One-Electron Radical Pathway 4.1 Cu-Catalyzed Diamination 4.2 Fe-Catalyzed Diamination 5 Summary and Outlook 
                        more » 
                        « less   
                    
                            
                            Synthesis of 3‐Aminopiperidines via I(III)‐Mediated Olefin Diamination with (Hetero)aryl Nucleophiles
                        
                    
    
            Abstract 3‐Aminopiperidines are a valuable motif present in small molecule pharmaceuticals and bioactive natural products. Synthesis of these moieties via olefin diamination would be an attractive approach, however significant challenges remain with regards to both regioselectivity and exogenous nucleophile scope. Herein, we report a metal‐free olefin diamination via a “heterocyclic group transfer“ (HGT) reaction of I(III)N‐HVI reagents, giving rise to 3‐aminopiperidines with high selectivity. The HGT strategy leverages heteroarenes as oxidatively masked amine nucleophiles, giving rise to (hetero)arylonium salt products which are isolated via simple trituration and provide a versatile handle for downstream diversification. This represents only the second6‐endoselective I(III)‐mediated diamination reaction and mechanistic studies indicate ring opening of an intermediate aziridinium ion is responsible for the6‐endoselectivity. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10442042
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Synthesis & Catalysis
- Volume:
- 365
- Issue:
- 16
- ISSN:
- 1615-4150
- Format(s):
- Medium: X Size: p. 2697-2702
- Size(s):
- p. 2697-2702
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A palladium‐catalyzed dearomativesyn‐1,4‐oxyamination protocol using non‐activated arenes has been developed. This one‐pot procedure utilizes arenophile chemistry, and the correspondingpara‐cycloadducts are treated with oxygen nucleophiles via formal allylic substitution, providing direct access tosyn‐1,4‐oxyaminated products. The reaction conditions permit a range of arenes, as well as different O‐nucleophiles, such as oximes and benzyl alcohols. Moreover, this process was established in an asymmetric fashion, delivering products with high enantioselectivity. The dearomatized products are amenable to a multitude of further derivatizations ranging from olefin chemistry to C−H activation, giving rise to a diverse set of new functionalities. Overall, this dearomative functionalization offers rapid and controlled formation of molecular complexity, enabling straightforward access to functionalized small molecules from simple and readily available arenes.more » « less
- 
            A new selenophosphoramide-catalyzed diamination of terminal- and trans -1,2-disubstituted olefins is presented. Key to the success of this transformation was the introduction of a fluoride scavenger, trimethylsilyl trifluoromethanesulfonate (TMSOTf), to prevent a competitive syn -elimination pathway, as was the use of a phosphoramide ligand on selenium to promote the desired substitution reaction. A screen of catalysts revealed that more electron-rich phosphine ligands resulted in higher yields of the desired product, with selenophosphoramides giving the optimal results. A broad range of substrates and functional groups were tolerated and yields were generally good to excellent. For ( E )-1,2-disubstituted olefins, diastereoselectivities were always high, giving exclusively anti products. The conditions were also applied to substrates bearing internal nucleophiles such as esters and carbonates, giving rise to 1,2-aminoesters and cyclic carbonates, respectively.more » « less
- 
            A thioarylation method is developed for the synthesis of 2,3-dihydrothiopheniums through an electrophilic-cyclization–cross-coupling mechanism, harnessing the gold(I)/(III) cycle of the recently developed MeDalPhosAuCl catalyst. Single-crystal X-ray crystal structural analysis of the dihydrothiophenium products characterized the anti-addition of the sulfur and Csp2 group to the alkyne and a preference for 5-endo dig cyclization. The dihydrothiophenium products are demonstrated as synthetic building blocks for stereodefined acyclic tetrasubstituted alkenes upon ring-opening reaction with amines. Intramolecular competition experiments show the favorability of Csp3 tether cyclizations over Csp2 tethers, preferentially generating dihydrothiopheniums over thiopheniums. Intermolecular competition experiments of alkyne aryl groups and an intermolecular aryl iodide competition suggest a rate-determining reductive elimination step in the gold(I)/gold(III) catalytic cycle. This rate-determining step is further supported by HRMS analysis of reaction intermediates that identify the catalyst resting state under turnover conditions. Catalyst poisoning experiments provide evidence of substrate inhibition, further consistent with these conclusions.more » « less
- 
            Abstract Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAd2nBu as a ligand enables regioselective heteroannulation ofo-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
