Abstract Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self‐discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFxcathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFxdischarge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, cross‐sectional focused ion beam, high‐resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFxlayers, and carbon with lower sp2content similar to the hard‐carbon structure are the products during discharge. This work deepens the understanding of CFxas a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance. 
                        more » 
                        « less   
                    
                            
                            Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities
                        
                    
    
            Abstract Exceeding the energy density of lithium−carbon monofluoride (Li−CFx), today's leading Li primary battery, requires an increase in fluorine content (x) that determines the theoretical capacity available from C−F bond reduction. However, high F‐content carbon materials face challenges such as poor electronic conductivity, low reduction potentials (<1.3 V versus Li/Li+), and/or low C−F bond utilization. This study investigates molecular structural design principles for a new class of high F‐content fluoroalkyl‐aromatic catholytes that address these challenges. A polarizable conjugated system—an aromatic ring with an alkene linker—functions as electron acceptor and redox initiator, enabling a cascade defluorination of an adjacent perfluoroalkyl chain (RF= −CnF2n+1). The synthesized molecules successfully overcome premature deactivation observed in previously studied catholytes and achieve close‐to‐full defluorination (up to 15/17 available F), yielding high gravimetric capacities of 748 mAh g−1fluoroalkyl‐aromaticand energies of 1785 Wh kg−1fluoroalkyl‐aromatic. The voltage compatibility between fluoroalkyl‐aromatics and CFxenables design of hybrid cells containing C−F redox activity in both solid and liquid phases, with a projected enhancement of Li–CFxgravimetric energy by 35% based on weight of electrodes+electrolyte. With further improvement of cathode architecture, these “liquid CFx” analogues are strong candidates for exceeding the energy limitations of today's primary chemistries. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2207299
- PAR ID:
- 10442193
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 13
- Issue:
- 32
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We report on the largest open‐shell graphenic bilayer and also the first example of triply negatively charged radical π‐dimer. Upon three‐electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2(Ar=2,6‐dimethylphenyl) (12) was transformed to a triply negatively charged species123.−, which has been characterized by single‐crystal X‐ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID).123.−features a 96‐center‐3‐electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π‐fused rings with 96 conjugatedsp2carbon atoms. Spin frustration is observed with the frustration parameterf>31.8 at low temperatures in123.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.more » « less
- 
            Abstract Visible‐light capture activates a thermodynamically inert CoIII−CF3bond for direct C−H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox‐active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi‐octahedral [(SOCO)CoIII(CF3)(MeCN)2] (2), but in non‐coordinating solvents the complex is red, square pyramidal [(SOCO)CoIII(CF3)(MeCN)] (3). Both are thermally stable, and2is stable in light. But exposure of3to low‐energy light results in facile homolysis of the CoIII−CF3bond, releasing.CF3radical, which is efficiently trapped by TEMPO.or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate‐derived oxidant because the CoIIby‐product of CoIII−CF3homolysis produces H2. The photophysical properties of2and3provide a rationale for the disparate light stability.more » « less
- 
            Abstract This is the first report of molybdenum carbide‐based electrocatalyst for sulfur‐based sodium‐metal batteries. MoC/Mo2C is in situ grown on nitrogen‐doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide–porous carbon nanotubes host (MoC/Mo2C@PCNT–S). Quasi‐solid‐state phase transformation to Na2S is promoted in carbonate electrolyte, with in situ time‐resolved Raman, X‐ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2C@PCNT–S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g−1at 1 A g−1, 818 mAh g−1at 3 A g−1, and 621 mAh g−1at 5 A g−1. The cells deliver superior cycling stability, retaining 650 mAh g−1after 1000 cycles at 1.5 A g−1, corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm−2) also show cycling stability. Density functional theory demonstrates that formation energy of Na2Sx(1 ≤x ≤ 4) on surface of MoC/Mo2C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2Sx(1 ≤x ≤ 4) on MoC/Mo2C surfaces results from charge transfer between the sulfur and Mo sites on carbides’ surface.more » « less
- 
            Molecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)2(TFA)][OTf] and Ag(bpy)(TFA)2(bpy, 2,2′-bipyridine; OTf, CF3SO3–) complexes to activate trifluoroacetate (TFA) by visible light–induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp2)–CF3bonds. This methodology is general and extends to other perfluoroalkyl carboxylates of higher chain length (RFCO2–; RF, CF2CF3or CF2CF2CF3). The photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(II) complexes electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at turnover numbers exceeding 20 was accomplished by photoexciting the Ag(II)–TFA ligand-to-metal charge transfer (LMCT) state, followed by electrochemical reoxidation of the Ag(I) photoproduct back to the Ag(II) photoreactant.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
