skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Dark Exciton in 2D Hybrid Halide Perovskite Films Revealed by Magneto‐Photoluminescence at High Magnetic Field
Abstract

A comprehensive study of the exciton fine structure (EFS) is presented in 2D‐phenethylammonium lead iodide films using magnetic field‐induced polarization of photoluminescence (PL) in both Faraday and Voigt configurations at fields up to 25 Tesla. Three exciton bands are identified in the PL spectrum associated with bound, dark, and bright excitons, respectively. Under a high magnetic field in Faraday/Voigt configuration, large field‐induced circular/linear polarization is observed in the PL band related to the dark exciton, which is magnetically activated. Furthermore, it is found that the dark exciton has an anomalous field‐induced circular polarization, which cannot be explained by the classical Boltzmann distribution of spin‐polarized species. These findings are well explained by an effective mass model that includes exchange terms unique to the monoclinic symmetry as a perturbation of the EFS in the approximate tetragonal symmetry. It is also confirmed that the field‐induced linear polarization is sensitive to the monoclinic exchange term, whereas the field‐induced circular polarization is immune to such term.

 
more » « less
Award ID(s):
2054169
PAR ID:
10442209
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The use of valley excitonic states of transition metal dichalcogenides to store and manipulate information is hampered by fast carrier recombination and short valley lifetime. We propose theoretically a scheme to overcome such an obstacle, by applying a tilted exchange field through the magnetic proximity effect on monolayer MoS2. While the in-plane component of the exchange field brightens the dark exciton by spin mixing, the out-of-plane field can effectively gate the emission with an ON/OFF ratio of 2700. Importantly, the brightening is valley selective, leading to nearly 100% valley and spin polarization at room temperature. The resulting strongly gateable dark-exciton emission with long lifetime and near unity valley polarization makes it convenient to manipulate the valley degree of freedom, which may offer new paradigm for information processing and transmission.

     
    more » « less
  2. ABSTRACT

    The circular polarization of black hole accretion flows can encode properties of the underlying magnetic field structure. Using general relativistic magnetohydrodynamic (GRMHD) simulations, we study the imprint of magnetic field geometry on circular polarization images potentially observable by the Event Horizon Telescope (EHT). We decompose images into the different mechanisms that generate circular polarization in these models that are sensitive to both the line-of-sight direction and twist of the magnetic field. In these models, a stable sign of the circular polarization over time, as observed for several sources, can be attributed to a stability of these properties. We illustrate how different aspects of a generic helical magnetic field geometry become imprinted on a circular polarization image. We also identify novel effects of light bending that affect the circular polarization image on event horizon scales. One consequence is the sign flipping of successive photon rings in face-on systems, which if observable and uncorrupted by Faraday rotation, can directly encode the handedness of the approaching magnetic field.

     
    more » « less
  3. Broken spatial and time reversal symmetries in materials often give rise to new emergent phenomena in the interaction between light and matter. The combination of chirality and broken time reversal symmetry in a magnetic field leads to magneto–chiral phenomena, such as the nonreciprocity of transmission. Here, we construct a terahertz hybrid metamaterial that combines the natural optical activity of a chiral metallic gammadion bilayer and the magneto-optical activity of semiconductor indium antimonide in a magnetic field. We report a resonant magneto–chiral effect that leads to polarization-independent nonreciprocal optical transmittance. Furthermore, we discover a magneto-optical Faraday effect that is resonantly controlled by the natural optical activity of the chiral gammadion bilayer. Unlike optical activity due to chirality, the novel Faraday effect is odd under time reversal. Both phenomena are activated by a modest magnetic field, which may open doors for their potential applications in polarization-independent optical isolation and highly efficient polarization control at terahertz frequencies.

     
    more » « less
  4. Abstract

    Here, the observation of spin‐polarized emission for the Au25(SC8H9)18monolayer‐protected cluster (MPC) is reported. Variable‐temperature variable‐field magnetic circular photoluminescence (VTV‐MCPL) measurements are combined with VT‐PL spectroscopy to provide state‐resolved characterization of the transient electronic structure and spin‐polarized electron‐hole recombination dynamics of Au25(SC8H9)18. Through analysis of VTV‐MCPL measurements, a low energy (1.64 eV) emission peak is assigned to intraband relaxation between core‐metal‐localized superatom‐D to ‐P orbitals. Two higher energy interband components (1.78 eV, 1.94 eV) are assigned to relaxation from superatom‐D orbitals to states localized to the inorganic semirings. For both intraband superatom‐based or interband relaxation mechanisms, the extent of spin‐polarization, quantified as the degree of circular polarization (DOCP), is determined by state‐specific electron‐vibration coupling strengths and energy separations of bright and dark electronic fine‐structure levels. At low temperatures (<60 K), metal–metal superatom‐based intraband transitions dominate the global PL emission. At higher temperatures (>60 K), interband ligand‐based emission is dominant. In the low‐temperature PL regime, increased sample temperature results in larger global PL intensity. In the high‐temperature regime, increased temperature quenches interband radiative recombination. The relative intensity for each PL mechanism is discussed in terms of state‐specific electronic‐vibrational coupling strengths and related to the total angular momentum, quantified by Landég‐factors.

     
    more » « less
  5. Abstract

    Interstellar dust grains are often aligned. If the grain alignment direction varies along the line of sight, the thermal emission becomes circularly polarized. In the diffuse interstellar medium, the circular polarization at far-infrared and submillimeter wavelengths is predicted to be very small, and probably unmeasurable. However, circular polarization may reach detectable levels in photodissociation regions viewed through molecular clouds, in infrared dark clouds, and in protoplanetary disks. Measurement of circular polarization could help constrain the structure of the magnetic field in infrared dark clouds, and may shed light on the mechanisms responsible for grain alignment in protoplanetary disks.

     
    more » « less