Combustion is often difficult to spatially direct or tune associated kinetics—hence a run‐away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface‐then‐core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non‐flammable SiO2terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside‐out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm‐ and μm‐diameter tubes from appropriately sized fibers.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run‐away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface‐then‐core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non‐flammable SiO2terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside‐out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm‐ and μm‐diameter tubes from appropriately sized fibers.
more » « less- PAR ID:
- 10442248
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 44
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Due to increasing demand for clean and green energy, a need exists for fuels with low emissions, such as synthetic gas (syngas), which exhibits excellent combustion properties and has demonstrated promise in low-emission energy production, especially at microscales. However, due to complicated flame properties in microscale systems, it is of utmost importance to describe syngas combustion and comprehend its properties with respect to its boundary and inlet conditions, and its geometric characteristics. The present work studied premixed syngas combustion in a two-dimensional channel, with a length of 20 mm and a half-width of 1 mm, using computational approaches. Specifically, a fixed temperature gradient was imposed at the upper wall, from 300 K at the inlet to 1500 K at the outlet, to preheat the mixture, accounting for the conjugate heat transfer through the walls. The detailed chemistry of the ignition process was imitated using the San Diego mechanism involving 46 species and 235 reactions. For the given boundary conditions, stoichiometric premixed syngas containing various compositions of carbon monoxide, methane, and hydrogen, over a range of inlet velocities, was simulated, and various combustion phenomena, such as ignition, flame stabilization, and flames with repeated extinction and ignition (FREI), were analyzed using different metrics. The flame stability and the ignition time were found to correlate with the inlet velocity for a given syngas mixture composition. Similarly, for a given inlet velocity, the correlation of the flame properties with respect to the syngas composition was further scrutinized.more » « less
-
Laminar flame speeds at high pressure are difficult to experimentally observe. Typically, high-pressure flame diagnostic is accomplished through observation of a spherically expanding flame in a constant volume chamber. However, flame instabilities at large radius and ignition effects at small radius limit measurable pressure range for Laminar flame speeds. Advanced combustion devices which operate at high pressures to improve capabilities and efficiencies require high quality laminar flame speed to aid in simulations and development. To expand the measurable range of flame data for high pressure flame measurement, this study proposes the further investigation of the ignition source and the incorporation of ignition diagnostics into the traditional flame speed analysis. To achieve this goal in future research, experimental spark propagation is observed and described in detail with the goal of improved experimental control and understanding. Parameters such as pressure, composition, electrode geometry and surface quality are discussed and the implication it has on the observed schlieren kernel propagation. Careful preparation of the ignition source can lead to improved surface and shape for future flame measurements. It is also shown that the thermal energy dissipated into the gas during discharge can be captured experimentally through measurement of the spark voltage, current and plasma sheath voltage drop. With the experimentally captured thermal energy, a simple energy balance can be used to describe the size of the observed ignition kernel for radius larger than 0.3 mm (following breakdown). The measurement of the thermal energy is described utilizing two experimental methods to find the discharge voltage of the nonequilibrium region at the boundary of the electrodes.more » « less
-
Abstract The next generation of advanced combustion devices is being developed to operate under ultra-high-pressure conditions. However, under such extreme conditions, flame tends to become unstable and measurement of fundamental properties such as the laminar flame speed becomes challenging. One potential method to resolve this issue is measuring the ignition-affected region during spherically expanding flame experiments. The flame in this region is more resistant to perturbations and remains smooth due to the high stretch rates (i.e. small radii). Stable flame propagation allows for improved flame measurement, however, the experimentally observed kernel propagation is a function of both inflammation and ignition plasma. Therefore, the goal of the present study is to better understand the plasma formation and propagation during the ignition process, which would allow for reliable laminar flame speed measurements. To accomplish this goal, thermal plasma operating at high pressures is studied with emphasis on the spark energy effects on the formation of the ignition kernel. The thermal effect of the plasma is experimentally observed using a high-speed Schlieren imaging system. The energy dissipated within the plasma is measured with the use of voltage and current probes with a measurement of plasma sheath voltage drop as an input to numerical modeling. The measured kernel propagation rate is used to assess the accuracy of the model. The experiments and modeling are conducted in dry air at 1, 3, and 5 atm as well as in CH 4 -N 2 mixtures at 1 atm, and kernel radius, temperature, and mass are reported. The voltage-drop (as a non-thermal loss) is measured to be approximately 330 ± 5 V (dry air at 1 atm) for glow plasma with a large dependency on pressure, gas composition, electrode surface quality, electrode geometry, electrode shape, and current density. The same loss within the arc plasma is measured to be 15 ± 5 V, however the arc phase loss which agrees with arc propagation is significantly higher (∼45 V) which suggest additional unaccounted for phenomena occurring during the arc phase. With these losses, the modeling results are shown to predict the final kernel radius within 10%–20% of the observed kernel size. The difference found between the modeling and experimental results is determined to be a result of assuming that the primary loss mechanism (voltage drop across sheath formation) remains constant for the duration of glow discharge. The discrepancy for arc discharge is discussed with several potential sources, however, additional studies are required to better understand how the arc formation affects the kernel propagation.more » « less
-
SAE (Ed.)An investigation of the performance and emissions of a Fischer-Tropsch Coal-to-Liquid (CTL) Iso-Paraffinic Kerosene (IPK) was conducted using a CRDI compression ignition research engine with ULSD as a reference. Due to the low Derived Cetane Number (DCN), of IPK, an extended Ignition Delay (ID), and Combustion Delay (CD) were found for it, through experimentation in a Constant Volume Combustion Chamber (CVCC). Neat IPK was analyzed in a research engine at 4 bar Indicated Mean Effective Pressure (IMEP) at three injection timings: 15°, 20°, and 25° BTDC. Combustion phasing (CA50) was matched with ULSD at 10.8° and 16° BTDC. The IPK DCN was found to be 26, while the ULSD DCN was significantly higher at 47 in a PAC CID 510. In the engine, IPK’s DCN combined with its short physical ignition delay and long chemical ignition delay compared to ULSD, caused extended duration in Low Temperature Heat Release (LTHR) and cool flame formation. It was found in an analysis of the Apparent Heat Release Rate (AHRR) curve for IPK that there were multiple Negative Temperature Coefficient (NTCR) regions before the main combustion event. The High Temperature Heat Release (HTHR) of IPK achieved a greater peak heat release rate compared to ULSD. Pressure rise rate for IPK was observed to increase significantly with increase in injection timing. The peak in-cylinder pressure was also greater for IPK when matching CA50 by varying injection timing. Emissions analysis revealed that IPK produced less NOx, soot, and CO2 compared to ULSD. CO and UHC emissions for IPK increased.