skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Pervasive RNA folding is crucial for narnavirus genome maintenance
A synthetic biology approach toward constructing an RNA-based genome expands our understanding of living things and opens avenues for technological advancement. For the precise design of an artificial RNA replicon either from scratch or based on a natural RNA replicon, understanding structure–function relationships of RNA sequences is critical. However, our knowledge remains limited to a few particular structural elements intensively studied so far. Here, we conducted a series of site-directed mutagenesis studies of yeast narnaviruses ScNV20S and ScNV23S, perhaps the simplest natural autonomous RNA replicons, to identify RNA elements required for maintenance and replication. RNA structure disruption corresponding to various portions of the entire narnavirus genome suggests that pervasive RNA folding, in addition to the precise secondary structure of genome termini, is essential for maintenance of the RNA replicon in vivo. Computational RNA structure analyses suggest that this scenario likely applies to other “narna-like" viruses. This finding implies selective pressure on these simplest autonomous natural RNA replicons to fold into a unique structure that acquires both thermodynamic and biological stability. We propose the importance of pervasive RNA folding for the design of RNA replicons that could serve as a platform for in vivo continuous evolution as well as an interesting model to study the origin of life.  more » « less
Award ID(s):
1935355
PAR ID:
10442339
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
26
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-amplifying (sa) RNA molecules—“replicons”—derived from the genomes of positive-sense RNA viruses are receiving increasing attention as gene and vaccine delivery vehicles. This is because mRNA forms of genes of interest can be incorporated into them and strongly amplified, thereby enhancing target protein expression. In this report, we demonstrate a nonmonotonic dependence of protein expression on the mass of transfected replicon, in contrast to the usual, monotonic case of non-saRNA transfections. We lipotransfected a variety of cell lines with increasing masses of enhanced yellow fluorescent protein (eYFP) as a reporter gene in sa form and found that there is a “sweet spot” at which protein expression and cell viability are optimum. To control the varying mass of transfected replicon RNA for a given mass of Lipofectamine, the replicons were mixed with a “carrier” RNA that is neither replicated nor translated; the total mass of transfected RNA was kept constant while increasing the fraction of the replicon from zero to one. Fluorescence microscopy studies showed that the optimum protein expression and cell viability are achieved for replicon fractions as small as 1/10 of the total transfected RNA, and these results were quantified by a systematic series of flow cytometry measurements. 
    more » « less
  2. Wang, Aiming (Ed.)
    Viruses are constantly subject to natural selection to enrich beneficial mutations and weed out deleterious ones. However, it remains unresolved as to how the phenotypic gains or losses brought about by these mutations cause the viral genomes carrying the very mutations to become more or less numerous. Previous investigations by us and others suggest that viruses with plus strand (+) RNA genomes may compel such selection by bottlenecking the replicating genome copies in each cell to low single digits. Nevertheless, it is unclear if similarly stringent reproductive bottlenecks also occur in cells invaded by DNA viruses. Here we investigated whether tomato yellow leaf curl virus (TYLCV), a small virus with a single-stranded DNA genome, underwent population bottlenecking in cells of its host plants. We engineered a TYLCV genome to produce two replicons that express green fluorescent protein and mCherry, respectively, in a replication-dependent manner. We found that among the cells entered by both replicons, less than 65% replicated both, whereas at least 35% replicated either of them alone. Further probability computation concluded that replication in an average cell was unlikely to have been initiated with more than three replicon genome copies. Furthermore, sequential inoculations unveiled strong mutual exclusions of these two replicons at the intracellular level. In conclusion, the intracellular population of the small DNA virus TYLCV is actively bottlenecked, and such bottlenecking may be a virus-encoded, evolutionarily conserved trait that assures timely selection of new mutations emerging through error-prone replication. 
    more » « less
  3. Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization. 
    more » « less
  4. null (Ed.)
    RNA origami is a framework for the modular design of nanoscaffolds that can be folded from a single strand of RNA and used to organize molecular components with nanoscale precision. The design of genetically expressible RNA origami, which must fold cotranscriptionally, requires modelling and design tools that simultaneously consider thermodynamics, the folding pathway, sequence constraints and pseudoknot optimization. Here, we describe RNA Origami Automated Design software (ROAD), which builds origami models from a library of structural modules, identifies potential folding barriers and designs optimized sequences. Using ROAD, we extend the scale and functional diversity of RNA scaffolds, creating 32 designs of up to 2,360 nucleotides, five that scaffold two proteins, and seven that scaffold two small molecules at precise distances. Micrographic and chromatographic comparisons of optimized and non-optimized structures validate that our principles for strand routing and sequence design substantially improve yield. By providing efficient design of RNA origami, ROAD may simplify the construction of custom RNA scaffolds for nanomedicine and synthetic biology. 
    more » « less
  5. Abstract Recent advances in fluorogen-binding “light-up” RNA aptamers have enabled protein-free detection of RNA in cells. Detailed biophysical characterization of folding of G-Quadruplex (GQ)-based light-up aptamers such as Spinach, Mango and Corn is still lacking despite the potential implications on their folding and function. In this work we employ single-molecule fluorescence-force spectroscopy to examine mechanical responses of Spinach2,iMangoIII and MangoIV. Spinach2 unfolds in four discrete steps as force is increased to 7 pN and refolds in reciprocal steps upon force relaxation. In contrast, GQ-core unfolding iniMangoIII and MangoIV occurs in one discrete step at forces >10 pN and refolding occurred at lower forces showing hysteresis. Co-transcriptional folding using superhelicases shows reduced misfolding propensity and allowed a folding pathway different from refolding. Under physiologically relevant pico-Newton levels of force, these aptamers may unfold in vivo and subsequently misfold. Understanding of the dynamics of RNA aptamers will aid engineering of improved fluorogenic modules for cellular applications. 
    more » « less