skip to main content


Title: Differential clearance rates of microbial phylotypes by four appendicularian species
Appendicularians are abundant planktonic filter feeders that play a significant role in the pelagic food web due to their high clearance rates. Their diet and feeding rates have typically been measured as bulk chlorophyll or cell removal, with some attention given to prey size but no differentiation between the microbial phylotypes. Using a combination of in situ and laboratory incubations with flow cytometry and next-generation sequencing, we found species-specific differences in clearance rates and diet compositions of 4 common species: Oikopleura albicans , O. fusiformis , O. longicauda , and O. dioica . While O. albicans most efficiently removed nano-eukaryotic algae, the other smaller species preferentially removed micron-sized pico-eukaryotic algae. Pico- and nano-eukaryotic cells constituted the major food source of the studied appendicularians despite their occurrence in oligotrophic water dominated by prokaryotic cells. Across species, pico- and nano-planktonic microalgae biomass comprised 45 to 75% of the appendicularian diets. Although non-photosynthetic bacteria were removed at lower rates than all other prey groups, their total contribution to the appendicularian diet was not trivial, representing 5 to 19% of the planktonic carbon in the appendicularian diet; pico-cyanobacteria contributed an additional 9 to 18%. Removal rates and efficiencies of pico-eukaryotes were higher than those of prokaryotes of similar size. Strikingly different clearance rates were observed for different prokaryotic phylotypes, indicating that factors other than size are involved in determining the capturability of the cells. Collectively, our findings provide additional evidence for differential retention of microbial prey among mucous-mesh grazers and its substantial effect on the upper-ocean microbial community.  more » « less
Award ID(s):
1851537
NSF-PAR ID:
10442430
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
706
ISSN:
0171-8630
Page Range / eLocation ID:
73 to 89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gelatinous zooplankton play a crucial role in marine planktonic food webs. However, primarily due to methodological challenges, the in situ diet of zooplankton remains poorly investigated and little is known about their trophic interactions including feeding behaviour, prey selection and in situ feeding rates. This is particularly true for gelatinous zooplankton including the marine pelagic tunicate,Dolioletta gegenbauri. In this study, we applied an 18S rRNA amplicon metabarcoding approach to identify the diet of captive‐fed and wild‐caughtD. gegenbaurion the midcontinental shelf of the South Atlantic Bight, USA. Sequencing‐based approaches were complimented with targeted quantitative real‐time polymerase chain reaction (PCR) analyses. Captive‐fedD. gegenbaurigut content was dominated by pico‐, nano‐ and micro‐plankton including pico‐dinoflagellates (picozoa) and diatoms. These results suggested that diatoms were concentrated byD. gegenbaurirelative to their concentration in the water column. Analysis of wild‐caught doliolids by quantitative real‐time PCR utilizing a group‐specific diatom primer set confirmed that diatoms were concentrated byD. gegenbauri, particularly by the gonozooid life stage associated with actively developing blooms. Sequences derived from larger metazoans were frequently observed in wild‐caught animals but not in captive‐fed animals suggesting experimental bias associated with captive feeding. These studies revealed that the diet ofD. gegenbauriis considerably more diverse than previously described, that parasites are common in wild populations, and that prey quality, quantity and parasites are likely all important factors in regulating doliolid population dynamics in continental shelf environments.

     
    more » « less
  2. Abstract

    Salps are gelatinous planktonic suspension feeders that filter large volumes of water in the food‐dilute open ocean. Their life cycle allows periodic exponential growth and population blooms. Dense swarms of salps have a high grazing impact that can deplete the photic zone of phytoplankton and export huge quantities of organic matter to the deep sea. Previous studies described their feeding manner as mostly nonselective, with larger particles retained at higher efficiencies than small particles. To examine salp diets, we used direct in situ sampling (InEx method) of undisturbed solitarySalpa maxima. Aggregates (“chains”) ofSalpa fusiformisandThalia democraticawere studied using in situ incubations. Our findings suggest that in situ feeding rates are higher than previously reported and that cell removal is size independent with ∼ 1μm picoeukaryotes preferentially removed over both larger eukaryotes and smaller bacteria. The prey : predator size ratios we measured (1 : 104–1 : 105) are an order of magnitude smaller than previously reported values and to the best of our knowledge, are the smallest values reported so far for any planktonic suspension feeders. Despite differences among the three species studied, they had similar prey preferences with no correlation between salp body length and prey size. Our findings shed new light on prey : predator relationships in planktonic systems—in particular, that factors other than size influence filtration efficiency—and suggest that in situ techniques should be devised and applied for the study of suspension feeding in the ocean.

     
    more » « less
  3. Abstract

    We investigated competition betweenSalpa thompsoniand protistan grazers during Lagrangian experiments near the Subtropical Front in the southwest Pacific sector of the Southern Ocean. Over a month, the salp community shifted from dominance by large (> 100 mm) oozooids and small (< 20 mm) blastozooids to large (~ 60 mm) blastozooids. Phytoplankton biomass was consistently dominated by nano‐ and microphytoplankton (> 2 μm cells). Using bead‐calibrated flow‐cytometry light scatter to estimate phytoplankton size, we quantified size‐specific salp and protistan zooplankton grazing pressure. Salps were able to feed at a > 10,000 : 1 predator : prey size (linear‐dimension) ratio. Small blastozooids efficiently retained cells > 1.4μm (high end of picoplankton size, 0.6–2 μm cells) and also obtained substantial nutrition from smaller bacteria‐sized cells. Larger salps could only feed efficiently on > 5.9μm cells and were largely incapable of feeding on picoplankton. Due to the high biomass of nano‐ and microphytoplankton, however, all salps derived most of their (phytoplankton‐based) nutrition from these larger autotrophs. Phagotrophic protists were the dominant competitors for these prey items and consumed approximately 50% of the biomass of all phytoplankton size classes each day. Using a Bayesian statistical framework, we developed an allometric‐scaling equation for salp clearance rates as a function of salp and prey size:urn:x-wiley:00243590:media:lno11770:lno11770-math-0001where ESD is prey equivalent spherical diameter (µm), TL isS. thompsonitotal length,φ = 5.6 × 10−3 ± 3.6 × 10−4,ψ = 2.1 ± 0.13,θ = 0.58 ± 0.08, andγ = 0.46 ± 0.03 and clearance rate is L d‐1salp‐1. We discuss the biogeochemical and food‐web implications of competitive interactions among salps, krill, and protozoans.

     
    more » « less
  4. Suspension-feeding mollusks (e.g., bivalves) play a key role in improving the water quality of coastal environments by filtering out suspended matter from the water column. Microplastics are becoming ubiquitous in the marine environment, so it is important to understand if these particles affect feeding processes of bivalves. Additionally, previous studies regarding the impact of microplastic on bivalve physiology have not independently tested for the effects of surfactants which are often added to commercially available plastic particles to prevent aggregation. We measured the clearance rate of mussels (Mytilus edulis) exposed to one type of microplastic and three common surfactants. Mussels were given a dose of microalgal food (1 x 104 cells/mL) and 10-m polystyrene spheres (Polybead; 1 x 104 beads/mL). Experimental treatments tested were washed microspheres and microspheres coated with each of the following surfactants at a concentration of 2mg/L: triton X-100, benzalkonium chloride, and sodium dodecyl sulfate. These surfactants are nonionic, cationic, and anionic, respectively. Control mussels were given a microalgal diet only (2 x 104 cells/mL). Each mussel was placed in an individual 1-L chamber and exposed to one of the aforementioned treatments. Water samples were taken at the start of the experiment (t=0) and then every 10 minutes for 30 minutes to determine clearance rates. Particle concentrations were measured using an electronic particle counter (Coulter Counter) at an appropriate size range for the algae and microspheres. Our results indicate that microspheres with or without surfactant had no effect on clearance rates of mussel compared to those of the controls. Further, our research suggests that the use of polystyrene microspheres in future experiments without initial washing does not affect the clearance rate of mussels. 
    more » « less
  5. Suspension-feeding mollusks (e.g., bivalves) play a key role in improving the water quality of coastal environments by filtering out suspended matter from the water column. Microplastics are becoming ubiquitous in the marine environment, so it is important to understand if these particles affect feeding processes of bivalves. Additionally, previous studies regarding the impact of microplastic on bivalve physiology have not independently tested for the effects of surfactants which are often added to commercially available plastic particles to prevent aggregation. We measured the clearance rate of mussels (Mytilus edulis) exposed to one type of microplastic and three common surfactants. Mussels were given a dose of microalgal food (1 x 104 cells/mL) and 10-m polystyrene spheres (Polybead; 1 x 104 beads/mL). Experimental treatments tested were washed microspheres and microspheres coated with each of the following surfactants at a concentration of 2mg/L: triton X-100, benzalkonium chloride, and sodium dodecyl sulfate. These surfactants are nonionic, cationic, and anionic, respectively. Control mussels were given a microalgal diet only (2 x 104 cells/mL). Each mussel was placed in an individual 1-L chamber and exposed to one of the aforementioned treatments. Water samples were taken at the start of the experiment (t=0) and then every 10 minutes for 30 minutes to determine clearance rates. Particle concentrations were measured using an electronic particle counter (Coulter Counter) at an appropriate size range for the algae and microspheres. Our results indicate that microspheres with or without surfactant had no effect on clearance rates of mussel compared to those of the controls. Further, our research suggests that the use of polystyrene microspheres in future experiments without initial washing does not affect the clearance rate of mussels. 
    more » « less