Finkbeiner, Bernd; Kovacs, Laura
(Ed.)
With the growing use of deep neural networks(DNN) in mis- sion and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network struc- tures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremen- dous advances, DNN verifiers are still challenged to scale to large ver- ification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verifica- tion complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromis- ing model accuracy and this yields a multi-fold improvement in DNN verifier performance.
more »
« less