skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Micam: Visualizing Feature Extraction of Nonnatural Data
Convolutional Neural Networks (CNN) continue to revolutionize image recognition technology and are being used in non-image related fields such as cybersecurity. They are known to work as feature extractors, identifying patterns within large data sets, but when dealing with nonnatural data, what these features represent is not understood. Several class activation map (CAM) visualization tools are available that assist with understanding the CNN decisions when used with images, but they are not intuitively comprehended when dealing with nonnatural security data. Understanding what the extracted features represent should enable the data analyst and model architect tailor a model to maximize the extracted features while minimizing the computational parameters. In this paper we offer a new tool Model integrated Class Activation Maps, (MiCAM) which allows the analyst the ability to visually compare extracted feature intensities at the individual layer detail. We explore using this new tool to analyse several datasets. First the MNIST handwriting data set to gain a baseline understanding. We then analyse two security data sets: computers process metrics from cloud based application servers that are infected with malware and the CIC-IDS-2017 IP data traffic set and identify how re-ordering nonnatural security related data affects feature extraction performance and identify how reordering the data affect feature extraction performance.  more » « less
Award ID(s):
1736209
PAR ID:
10442465
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Machine Learning and Soft Computing (MLSC 2023)
Page Range / eLocation ID:
01 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We apply deep convolutional neural networks (CNNs) to estimate wave breaking type (e.g., non-breaking, spilling, plunging) from close-range monochrome infrared imagery of the surf zone. Image features are extracted using six popular CNN architectures developed for generic image feature extraction. Logistic regression on these features is then used to classify breaker type. The six CNN-based models are compared without and with augmentation, a process that creates larger training datasets using random image transformations. The simplest model performs optimally, achieving average classification accuracies of 89% and 93%, without and with image augmentation respectively. Without augmentation, average classification accuracies vary substantially with CNN model. With augmentation, sensitivity to model choice is minimized. A class activation analysis reveals the relative importance of image features to a given classification. During its passage, the front face and crest of a spilling breaker are more important than the back face. For a plunging breaker, the crest and back face of the wave are most important, which suggests that CNN-based models utilize the distinctive ‘streak’ temperature patterns observed on the back face of plunging breakers for classification. 
    more » « less
  2. Explainability is essential for AI models, especially in clinical settings where understanding the model’s decisions is crucial. Despite their impressive performance, black-box AI models are unsuitable for clinical use if their operations cannot be explained to clinicians. While deep neural networks (DNNs) represent the forefront of model performance, their explanations are often not easily interpreted by humans. On the other hand, hand-crafted features extracted to represent different aspects of the input data and traditional machine learning models are generally more understandable. However, they often lack the effectiveness of advanced models due to human limitations in feature design. To address this, we propose ExShall-CNN, a novel explainable shallow convolutional neural network for medical image processing. This model improves upon hand-crafted features to maintain human interpretability, ensuring that its decisions are transparent and understandable. We introduce the explainable shallow convolutional neural network (ExShall-CNN), which combines the interpretability of hand-crafted features with the performance of advanced deep convolutional networks like U-Net for medical image segmentation. Built on recent advancements in machine learning, ExShall-CNN incorporates widely used kernels while ensuring transparency, making its decisions visually interpretable by physicians and clinicians. This balanced approach offers both the accuracy of deep learning models and the explainability needed for clinical applications. 
    more » « less
  3. In the past few years, there have been many research studies conducted in the field of Satellite Image Classification. The purposes of these studies included flood identification, forest fire monitoring, greenery land identification, and land-usage identification. In this field, finding suitable data is often considered problematic, and some research has also been done to identify and extract suitable datasets for classification. Although satellite data can be challenging to deal with, Convolutional Neural Networks (CNNs), which consist of multiple interconnected neurons, have shown promising results when applied to satellite imagery data. In the present work, first we have manually downloaded satellite images of four different classes in Florida locations using the TerraFly Mapping System, developed and managed by the High Performance Database Research Center at Florida International University. We then develop a CNN architecture suitable for extracting features and capable of multi-class classification in our dataset. We discuss the shortcomings in the classification due to the limited size of the dataset. To address this issue, we first employ data augmentation and then utilize transfer learning methodology for feature extraction with VGG16 and ResNet50 pretrained models. We use these features to classify satellite imagery of Florida. We analyze the misclassification in our model and, to address this issue, we introduce a location-based CNN model. We convert coordinates to geohash codes, use these codes as an additional feature vector and feed them into the CNN model. We believe that the new CNN model combined with geohash codes as location features provides a better accuracy for our dataset. 
    more » « less
  4. Computational prediction of crystal materials properties can help to do large-scale insiliconscreening. Recent studies of material informatics have focused on expert design of multidimensionalinterpretable material descriptors/features. However, successes of deep learning suchas Convolutional Neural Networks (CNN) in image recognition and speech recognition havedemonstrated their automated feature extraction capability to effectively capture the characteristicsof the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, aCNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formationenergy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM featuresand Magpie features. Experiments showed that our method achieves better performance thanconventional regression algorithms such as support vector machines and Random Forest. It is alsobetter than CNN models using only the OFM features, the Magpie features, or the basic one-hotencodings. This demonstrates the advantages of CNN and feature fusion for materials propertyprediction. Finally, we visualized the two-dimensional OFM descriptors and analyzed the featuresextracted by the CNN to obtain greater understanding of the CNN-OFM model. 
    more » « less
  5. In this paper, a data-driven method is proposed for fast cascading outage screening in power systems. The proposed method combines a deep convolutional neural network (deep CNN) and a depth-first search (DFS) algorithm. First, a deep CNN is constructed as a security assessment tool to evaluate system security status based on observable information.With its automatic feature extraction ability and the high generalization, a well-trained deep CNN can produce estimated AC optimal power flow (ACOPF) results for various uncertain operation scenarios, i.e., fluctuated load and system topology change, in a nearly computation-free manner. Second, a scenario tree is built to represent the potential operation scenarios and the associated cascading outages. The DFS algorithm is developed as a fast screening tool to calculate the expected security index value for each cascading outage path along the entire tree, which can be a reference for system operators to take predictive measures against system collapse. The simulation results of applying the proposed deep CNN and the DFS algorithm on standard test cases verify their accuracy, and the computational efficiency is thousands of times faster than the model-based traditional approach, which implies the great potential of the proposed algorithm for online applications. 
    more » « less