skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TypeOut: Leveraging Just-in-Time Self-Affirmation for Smartphone Overuse Reduction
Smartphone overuse is related to a variety of issues such as lack of sleep and anxiety. We explore the application of Self-Affirmation Theory on smartphone overuse intervention in a just-in-time manner. We present TypeOut, a just-in-time intervention technique that integrates two components: an in-situ typing-based unlock process to improve user engagement, and self-affirmation-based typing con- tent to enhance effectiveness. We hypothesize that the integration of typing and self-affirmation content can better reduce smartphone overuse. We conducted a 10-week within-subject field experiment (N=54) and compared TypeOut against two baselines: one only showing the self-affirmation content (a common notification-based intervention), and one only requiring typing non-semantic content (a state-of-the-art method). TypeOut reduces app usage by over 50%, and both app opening frequency and usage duration by over 25%, all significantly outperforming baselines. TypeOut can potentially be used in other domains where an intervention may benefit from integrating self-affirmation exercises with an engaging just-in-time mechanism.  more » « less
Award ID(s):
2009977
PAR ID:
10442493
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Text entry makes up about one-fourth of the smartphone interaction events, and is known to be challenging and difficult. However, there has been little study about the characteristics of text entry in the context of smartphone app usage. In this paper, we present a mixed-method in-situ study conducted in 2016 with 17 active smartphone users to better understand text entry in smartphone app usage. Our results show 80% of text was entered into communication apps, with different apps exhibiting distinct usage patterns. We found that structured data such as URLs and email addresses are rarely typed but instead are auto-completed or replaced with search, copy-and-paste is rarely used, and sessions of smartphone usage with text entry involve more apps and last longer. We conclude with a discussion about the implications on the development of systems to better support mobile interaction. 
    more » « less
  2. Kim, JH.; Singh, M.; Khan, J.; Tiwary, U.S.; Sur, M.; Singh, D. (Ed.)
    Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user. 
    more » « less
  3. Although flash cells wear out, a typical SSD has enough cells and sufficiently sophisticated firmware that its lifetime generally exceeds the expected lifetime of its host system. Even under heavy use, SSDs last for years and can be replaced upon failure. On a smartphone, in contrast, the hardware is more limited and we show that, under heavy use, one can easily, and more quickly, wear out smartphone flash storage. Consequently, a simple, unprivileged, malicious application can render a smartphone unbootable ("bricked") in a few weeks with no warning signs to the user. This bleak result becomes more worrisome when considering the fact that smartphone users generally believe it is safe to try out new applications. To combat this problem, we study the I/O behavior of a wide range of Android applications. We find that high-volume write bursts exist, yet none of the applications we checked sustains an average write rate that is high enough to damage the device (under reasonable usage assumptions backed by the literature). We therefore propose a rate-limiting algorithm for write activity that (1) prevents such attacks, (2) accommodates "normal" bursts, and (3) ensures that the smartphone drive lifetime is longer than a preconfigured lower bound (i.e., its warranty). In terms of user experience, our design only requires that, in the worst case of an app that issues continuous, unsustainable, and unusual writes, the user decides whether to shorten the phone's life or rate limit the problematic app. 
    more » « less
  4. This analysis focuses on a smartphone app known as “Transit” that is used to unlock shared bicycles in Chicago. Data from the app were utilized in a three-part analysis. First, Transit app bikeshare usage patterns were compared with system-wide bikeshare utilization using publicly available data. The results revealed that hourly usage on weekdays generally follows classical peaked commuting patterns; however, daily usage reached its highest level on weekends. This suggests that there may be large numbers of both commuting and recreational users. The second part aimed to identify distinct user groups via cluster analysis; the results revealed six different clusters: (1) commuters, (2) utility users, (3) leisure users, (4) infrequent commuters, (5) weekday visitors, and (6) weekend visitors. The group unlocking the most shared bikes (45.58% of all Transit app unlocks) was commuters, who represent 10% of Transit app bikeshare users. The third part proposed a trip chaining algorithm to identify “trip chaining bikers.” This term refers to bikeshare users who return a shared bicycle and immediately check out another, presumably to avoid paying extra usage fees for trips over 30 min. The algorithm revealed that 27.3% of Transit app bikeshare users exhibited this type of “bike chaining” behavior. However, this varied substantially between user groups; notably, 66% of Transit app bikeshare users identified as commuters made one or more bike chaining unlocks. The implications are important for bikeshare providers to understand the impact of pricing policies, particularly in encouraging the turn-over of bicycles. 
    more » « less
  5. null (Ed.)
    Background Mobile health (mHealth) methods often rely on active input from participants, for example, in the form of self-report questionnaires delivered via web or smartphone, to measure health and behavioral indicators and deliver interventions in everyday life settings. For short-term studies or interventions, these techniques are deployed intensively, causing nontrivial participant burden. For cases where the goal is long-term maintenance, limited infrastructure exists to balance information needs with participant constraints. Yet, the increasing precision of passive sensors such as wearable physiology monitors, smartphone-based location history, and internet-of-things devices, in combination with statistical feature selection and adaptive interventions, have begun to make such things possible. Objective In this paper, we introduced Wear-IT, a smartphone app and cloud framework intended to begin addressing current limitations by allowing researchers to leverage commodity electronics and real-time decision making to optimize the amount of useful data collected while minimizing participant burden. Methods The Wear-IT framework uses real-time decision making to find more optimal tradeoffs between the utility of data collected and the burden placed on participants. Wear-IT integrates a variety of consumer-grade sensors and provides adaptive, personalized, and low-burden monitoring and intervention. Proof of concept examples are illustrated using artificial data. The results of qualitative interviews with users are provided. Results Participants provided positive feedback about the ease of use of studies conducted using the Wear-IT framework. Users expressed positivity about their overall experience with the framework and its utility for balancing burden and excitement about future studies that real-time processing will enable. Conclusions The Wear-IT framework uses a combination of passive monitoring, real-time processing, and adaptive assessment and intervention to provide a balance between high-quality data collection and low participant burden. The framework presents an opportunity to deploy adaptive assessment and intervention designs that use real-time processing and provides a platform to study and overcome the challenges of long-term mHealth intervention. 
    more » « less