Wearable devices are a popular class of portable ubiquitous technology. These devices are available in a variety of forms, ranging from smart glasses to smart rings. The fact that smart wearable devices are attached to the body makes them particularly suitable to be integrated into people’s daily lives. Thus, we propose that wearables can be particularly useful to help people make sense of different kinds of information and situations in the course of their everyday activities, in other words, to help support learning in everyday life. Further, different forms of wearables have different affordances leading to varying perceptions and preferences, depending on the purpose and context of use. While there is research on wearable use in the learning context, it is mostly limited to specific settings and usually only explores wearable use for a specific task. This paper presents an online survey with 70 participants conducted to understand users’ preferences and perceptions of how wearables may be used to support learning in their everyday life. Multiple ways of use of wearable for learning were proposed. Asking for information was the most common learning-oriented use. The smartwatch/wristband, followed by the smart glasses, was the most preferred wearable form factor to support learning. Our survey results also showed that the choice of wearable type to use for learning is associated with prior wearable experience and that perceived social influence of wearables decreases significantly with gain in the experience with a fitness tracker. Overall, our study indicates that wearable devices have untapped potential to be used for learning in daily life and different form factors are perceived to afford different functions and used for different purposes.
more »
« less
Psychological Science Meets Wearable Cognitive Assistance
A wearable cognitive assistant (WCA) is a computer-based application that guides a user through a task with input from wearable devices with the aid of computational resources in nearby locations (cloudlets). Psychological science informs development of WCAs and is encountering new issues for research. We discuss three relevant research areas: response time, action segmentation, and task comprehension.
more »
« less
- Award ID(s):
- 2106862
- PAR ID:
- 10442542
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Current Directions in Psychological Science
- Volume:
- 32
- Issue:
- 6
- ISSN:
- 0963-7214
- Format(s):
- Medium: X Size: p. 446-453
- Size(s):
- p. 446-453
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents the design of a wearable robotic forearm for close-range human-robot collaboration. The robot's function is to serve as a lightweight supernumerary third arm for shared workspace activities. We present a functional prototype resulting from an iterative design process including several user studies. An analysis of the robot's kinematics shows an increase in reachable workspace by 246 % compared to the natural human reach. The robot's degrees of freedom and range of motion support a variety of usage scenarios with the robot as a collaborative tool, including self-handovers, fetching objects while the human's hands are occupied, assisting human-human collaboration, and stabilizing an object. We analyze the bio-mechanical loads for these scenarios and find that the design is able to operate within human ergonomic wear limits. We then report on a pilot human-robot interaction study that indicates robot autonomy is more task-time efficient and preferred by users when compared to direct voice-control. These results suggest that the design presented here is a promising configuration for a lightweight wearable robotic augmentation device, and can serve as a basis for further research into human-wearable collaboration.more » « less
-
Without finger function, people with C5-7 spinal cord injury (SCI) regularly utilize wrist extension to passively close the fingers and thumb together for grasping. Wearable assistive grasping devices often focus on this familiar wrist-driven technique to provide additional support and amplify grasp force. Despite recent research advances in modernizing these tools, people with SCI often abandon such wearable assistive devices in the long term. We suspect that the wrist constraints imposed by such devices generate undesirable reach and grasp kinematics. Here we show that using continuous robotic motor assistance to give users more adaptability in their wrist posture prior to wrist-driven grasping reduces task difficulty and perceived exertion. Our results demonstrate that more free wrist mobility allows users to select comfortable and natural postures depending on task needs, which improves the versatility of the assistive grasping device for easier use across different hand poses in the arm’s workspace. This behavior holds the potential to improve ease of use and desirability of future device designs through new modes of combining both body-power and robotic automation.more » « less
-
Physical therapy is often essential for complete recovery after injury. However, a significant population of patients fail to adhere to prescribed exercise regimens. Lack of motivation and inconsistent in-person visits to physical therapy are major contributing factors to suboptimal exercise adherence, slowing the recovery process. With the advancement of virtual reality (VR), researchers have developed remote virtual rehabilitation systems with sensors such as inertial measurement units. A functional garment with an integrated wearable sensor can also be used for real-time sensory feedback in VR-based therapeutic exercise and offers affordable remote rehabilitation to patients. Sensors integrated into wearable garments offer the potential for a quantitative range of motion measurements during VR rehabilitation. In this research, we developed and validated a carbon nanocomposite-coated knit fabric-based sensor worn on a compression sleeve that can be integrated with upper-extremity virtual rehabilitation systems. The sensor was created by coating a commercially available weft knitted fabric consisting of polyester, nylon, and elastane fibers. A thin carbon nanotube composite coating applied to the fibers makes the fabric electrically conductive and functions as a piezoresistive sensor. The nanocomposite sensor, which is soft to the touch and breathable, demonstrated high sensitivity to stretching deformations, with an average gauge factor of ~35 in the warp direction of the fabric sensor. Multiple tests are performed with a Kinarm end point robot to validate the sensor for repeatable response with a change in elbow joint angle. A task was also created in a VR environment and replicated by the Kinarm. The wearable sensor can measure the change in elbow angle with more than 90% accuracy while performing these tasks, and the sensor shows a proportional resistance change with varying joint angles while performing different exercises. The potential use of wearable sensors in at-home virtual therapy/exercise was demonstrated using a Meta Quest 2 VR system with a virtual exercise program to show the potential for at-home measurements.more » « less
-
The paper presents the design of a lower leg orthotic device based on dimensional synthesis of multi-loop six-bar linkages. The wearable device is comprised of a 2R serial chain, termed the backbone, sized according to the wearer’s limb anthropometric dimensions. The paper is a result of our current efforts in proposing a systematic process for the development of 3D printed customized assistive devices for patients with reduced limb mobility, based on anthropometric data and physiological task. To design the wearable device, the physiological task of the limb is obtained using an optical motion capture system and its dimensions are set such that it matched the lower leg kinematics as closely as possible. As a next step a six-bar linkage is synthesized and ensured that its motion is as close as possible to the physiological task. Next, the 2R backbone is replaced by the wearer’s limb to provide the skeletal structure for the multiloop wearable device. During the final stage of the process the 2R backbone is relocated to parallel the human’s limb on one side, providing support and stability. The designed device can be secured to the thigh of the user to guide the lower leg without causing any discomfort and to ensure a natural physiological gait trajectory. This results in orthotic device for assisting people with lower leg injuries with compact size and better wearability.more » « less
An official website of the United States government
