skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Title: Discovery of dipolar chromospheres in two white dwarfs
ABSTRACT

This paper reports the ULTRACAM discovery of dipolar surface spots in two cool magnetic white dwarfs with Balmer emission lines, while a third system exhibits a single spot, similar to the prototype GD 356. The light curves are modelled with simple, circular, isothermal dark spots, yielding relatively large regions with minimum angular radii of 20°. For those stars with two light-curve minima, the dual spots are likely observed at high inclination (or colatitude); however, identical and antipodal spots cannot simultaneously reproduce both the distinct minima depths and the phases of the light-curve maxima. The amplitudes of the multiband photometric variability reported here are all several times larger than that observed in the prototype GD 356; nevertheless, all DAHe stars with available data appear to have light-curve amplitudes that increase towards the blue in correlated ratios. This behaviour is consistent with cool spots that produce higher contrasts at shorter wavelengths, with remarkably similar spectral properties given the diversity of magnetic field strengths and rotation rates. These findings support the interpretation that some magnetic white dwarfs generate intrinsic chromospheres as they cool, and that no external source is responsible for the observed temperature inversion. Spectroscopic time-series data for DAHe stars is paramount for further characterization, where it is important to obtain well-sampled data, and consider wavelength shifts, equivalent widths, and spectropolarimetry.

 
more » « less
NSF-PAR ID:
10442543
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1097-1105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results. In total, we detected 26 periodicities from the TESS light curve of this DBV star using standard pre-whitening. The oscillation frequencies are associated with nonradial g (gravity)-mode pulsations with periods from ∼422 s to ∼1087 s. Moreover, we detected eight combination frequencies between ∼543 s and ∼295 s. We combined these data with a huge amount of observations from the ground. We found a constant period spacing of 39.25 ± 0.17 s, which helped us to infer its mass ( M ⋆  = 0.588 ± 0.024  M ⊙ ) and constrain the harmonic degree ℓ of the modes. We carried out a period-fit analysis on GD 358, and we were successful in finding an asteroseismological model with a stellar mass ( M ⋆ = 0.584 −0.019 +0.025   M ⊙ ), compatible with the stellar mass derived from the period spacing, and in line with the spectroscopic mass ( M ⋆  = 0.560 ± 0.028  M ⊙ ). In agreement with previous works, we found that the frequency splittings vary according to the radial order of the modes, suggesting differential rotation. Obtaining a seismological model made it possible to estimate the seismological distance ( d seis  = 42.85 ± 0.73 pc) of GD 358, which is in very good accordance with the precise astrometric distance measured by Gaia EDR3 ( π  = 23.244 ± 0.024,  d Gaia  = 43.02 ± 0.04 pc). Conclusions. The high-quality data measured with the TESS space telescope, used in combination with data taken from ground-based observatories, provides invaluable information for conducting asteroseismological studies of DBV stars, analogously to what happens with other types of pulsating white-dwarf stars. The currently operating TESS mission, together with the advent of other similar space missions and new stellar surveys, will give an unprecedented boost to white dwarf asteroseismology. 
    more » « less
  2. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. 
    more » « less
  3. ABSTRACT

    We analyse two binary systems containing giant stars, V723 Mon (‘the Unicorn’) and 2M04123153+6738486 (‘the Giraffe’). Both giants orbit more massive but less luminous companions, previously proposed to be mass-gap black holes. Spectral disentangling reveals luminous companions with star-like spectra in both systems. Joint modelling of the spectra, light curves, and spectral energy distributions robustly constrains the masses, temperatures, and radii of both components: the primaries are luminous, cool giants ($T_{\rm eff,\, giant} = 3800$ and $4000\, \rm K$, $R_{\rm giant}= 22.5$ and $25\, {\rm R}_{\odot }$) with exceptionally low masses ($M_{\rm giant} \approx 0.4\, {\rm M}_{\odot }$) that likely fill their Roche lobes. The secondaries are only slightly warmer subgiants ($T_{\rm eff,\, 2} = 5800$ and $5150\, \rm K$, $R_2= 8.3$ and $9\, {\rm R}_{\odot }$) and thus are consistent with observed UV limits that would rule out main-sequence stars with similar masses ($M_2 \approx 2.8$ and ${\approx}1.8\, {\rm M}_{\odot }$). In the Unicorn, rapid rotation blurs the spectral lines of the subgiant, making it challenging to detect even at wavelengths where it dominates the total light. Both giants have surface abundances indicative of CNO processing and subsequent envelope stripping. The properties of both systems can be reproduced by binary evolution models in which a $1{-}2\, {\rm M}_{\odot }$ primary is stripped by a companion as it ascends the giant branch. The fact that the companions are also evolved implies either that the initial mass ratio was very near unity, or that the companions are temporarily inflated due to rapid accretion. The Unicorn and Giraffe offer a window into into a rarely observed phase of binary evolution preceding the formation of wide-orbit helium white dwarfs, and eventually, compact binaries containing two helium white dwarfs.

     
    more » « less
  4. Abstract The photometric and spectral variability of brown dwarfs probes heterogeneous temperature and cloud distributions and traces the atmospheric circulation patterns. We present a new 42 hr Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectral time series of VHS 1256-1257 b, a late L-type planetary-mass companion that has been shown to have one of the highest variability amplitudes among substellar objects. The light curve is rapidly evolving and best fit by a combination of three sine waves with different periods and a linear trend. The amplitudes of the sine waves and the linear slope vary with the wavelength, and the corresponding spectral variability patterns match the predictions by models invoking either heterogeneous clouds or thermal profile anomalies. Combining these observations with previous HST monitoring data, we find that the peak-to-valley flux difference is 33% ± 2% with an even higher amplitude reaching 38% in the J band, the highest amplitude ever observed in a substellar object. The observed light curve can be explained by maps that are composed of zonal waves, spots, or a mixture of the two. Distinguishing the origin of rapid light curve evolution requires additional long-term monitoring. Our findings underscore the essential role of atmospheric dynamics in shaping brown-dwarf atmospheres and highlight VHS 1256-1257 b as one of the most favorable targets for studying the atmospheres, clouds, and atmospheric circulation of planets and brown dwarfs. 
    more » « less
  5. ABSTRACT

    Gaia provided the largest ever catalogue of white dwarf stars. We use this catalogue, along with the third public data release of the Zwicky Transient Facility (ZTF), to identify new eclipsing white dwarf binaries. Our method exploits light-curve statistics and the box least-squares algorithm to detect periodic light-curve variability. The search revealed 18 new binaries, of which 17 are eclipsing. We use the position in the Gaia H-R diagram to classify these binaries and find that the majority of these white dwarfs have MS companions. We identify one system as a candidate eclipsing white dwarf–brown dwarf binary and a further two as extremely low-mass white dwarf binaries. We also provide identification spectroscopy for 17 of our 18 binaries. Running our search method on mock light curves with real ZTF sampling, we estimate our efficiency of detecting objects with light curves similar to the ones of the newly discovered binaries. Many more binaries are to be found in the ZTF footprint as the data releases grow, so our survey is ongoing.

     
    more » « less