Reconfigurable Hybrid Asymmetrical Load Modulated Balanced Amplifier with High Linearity, Wide Bandwidth, and Load Insensitivity
More Like this
-
Effectively balancing traffic in datacenter networks is a crucial operational goal. Most existing load balancing approaches are handcrafted to the structure of the network and/or network workloads. Thus, new load balancing strategies are required if the underlying network conditions change, e.g., due to hard or grey failures, network topology evolution, or workload shifts. While we can theoretically derive the optimal load balancing strategy by solving an optimization problem given certain traffic and topology conditions, these problems take too much time to solve and makes the derived solution stale to deploy. In this paper, we describe a load balancing scheme Learned Load Balancing (LLB), which is a general approach to finding an optimal load balancing strategy for a given network topology and workload, and is fast enough in practice to deploy the inferred strategies. LLB uses deep supervised learning techniques to learn how to handle different traffic patterns and topology changes, and adapts to any failures in the underlying network. LLB leverages emerging trends in network telemetry, programmable switching, and “smart” NICs. Our experiments show that LLB performs well under failures and can be expanded to more complex, multi-layered network topologies. We also prototype neural network inference on smartNICs to demonstrate the workability of LLB.more » « less
-
Electric Aircraft have the potential to revolutionize short-distance air travel with lower operating costs and simplified maintenance. However, due to the long lead-time associated with procuring batteries and the maintenance challenges of replacing and repairing batteries in electric aircraft, there are still unanswered questions related to the true long-term operating costs of electric aircraft. This research examines using a load-sharing system in electric aircraft to optimally tune battery degradation in a multi-battery system such that the battery life of a single battery is extended. The active optimization of energy drawn from multiple battery packs means that each battery pack reaches its optimal replacement point at the same time; thereby simplifying the maintenance procedure and reducing cost. This work uses lithium iron phosphate batteries experimentally characterized and simulated in OpenModelica for a flight load profile. Adaptive agents control the load on the battery according to factors such as state of charge, and state of health, to respond to potential faults. The findings in this work show the potential for adaptive agents to selectively draw more power from a healthy battery to extend the lifespan of a degraded battery such that the remaining useful life of both batteries reaches zero at the same time. Simulations show that dual battery replacement can be facilitated using the proposed method when the in-service battery has a remaining useful life of greater than 0.5; assuming that the replacement battery it is paired with has a remaining useful life of 1.0. Limitations of the proposed method are discussed within this work.more » « less
An official website of the United States government

