skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Massive Star Formation in the Tarantula Nebula
Abstract In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of 12 CO and 13 CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178 M ⊙ pc −2 , 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with 12 CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H 2 gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000 M ⊙ and that the region has a star formation rate (SFR) of 0.18 M ⊙ yr −1 . The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years.  more » « less
Award ID(s):
2054178 2009849 2009624
PAR ID:
10442768
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
944
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract NGC 602 is a young, low-metallicity star cluster in the “Wing” of the Small Magellanic Cloud. We reveal the recent evolutionary past of the cluster through analysis of high-resolution (∼0.4 pc) Atacama Large Millimeter/submillimeter Array observations of molecular gas in the associated H ii region N90. We identify 110 molecular clumps ( R < 0.8 pc) traced by CO emission, and study the relationship between the clumps and associated young stellar objects (YSOs) and pre-main-sequence (PMS) stars. The clumps have high virial parameters (typical α vir = 4–11) and may retain signatures of a collision in the last ≲8 Myr between H i components of the adjacent supergiant shell SMC-SGS 1. We obtain a CO-bright-to-H 2 gas conversion factor of X CO, B = (3.4 ± 0.2) × 10 20 cm −2 (K km s −1 ) −1 , and correct observed clump properties for CO-dark H 2 gas to derive a total molecular gas mass in N90 of 16,600 ± 2400 M ⊙ . We derive a recent (≲1 Myr) star formation rate of 130 ± 30 M ⊙ Myr −1 with an efficiency of 8% ± 3% assessed through comparing total YSO mass to total molecular gas mass. Very few significant radial trends exist between clump properties or PMS star ages and distance from NGC 602. We do not find evidence for a triggered star formation scenario among the youngest (≲2 Myr) stellar generations, and instead conclude that a sequential star formation process in which NGC 602 did not directly cause recent star formation in the region is likely. 
    more » « less
  2. Context. The Central Molecular Zone (CMZ), a ∼200 pc sized region around the Galactic Centre, is peculiar in that it shows a star formation rate (SFR) that is suppressed with respect to the available dense gas. To study the SFR in the CMZ, young stellar objects (YSOs) can be investigated. Here we present radio observations of 334 2.2 μm infrared sources that have been identified as YSO candidates. Aims: Our goal is to investigate the presence of centimetre wavelength radio continuum counterparts to this sample of YSO candidates which we use to constrain the current SFR in the CMZ. Methods: As part of the GLObal view on STAR formation (GLOSTAR) survey, D-configuration Very Large Array data were obtained for the Galactic Centre, covering −2° < l < 2° and −1° < b < 1° with a frequency coverage of 4-8 GHz. We matched YSOs with radio continuum sources based on selection criteria and classified these radio sources as potential H II regions and determined their physical properties. Results: Of the 334 YSO candidates, we found 35 with radio continuum counterparts. We find that 94 YSOs are associated with dense dust condensations identified in the 870 μm ATLASGAL survey, of which 14 have a GLOSTAR counterpart. Of the 35 YSOs with radio counterparts, 11 are confirmed as H II regions based on their spectral indices and the literature. We estimated their Lyman continuum photon flux in order to estimate the mass of the ionising star. Combining these with known sources, the present-day SFR in the CMZ is calculated to be ∼0.068 M⊙ yr−1, which is ∼6.8% of the Galactic SFR. Candidate YSOs that lack radio counterparts may not have yet evolved to the stage of exhibiting an H II region or, conversely, are older and have dispersed their natal clouds. Since many lack dust emission, the latter is more likely. Our SFR estimate in the CMZ is in agreement with previous estimates in the literature. 
    more » « less
  3. ABSTRACT The evolutionary sequence for high-mass star formation starts with massive starless clumps that go on to form protostellar, young stellar objects and then compact H ii regions. While there are many examples of the three later stages, the very early stages have proved to be elusive. We follow-up a sample of 110 mid-infrared dark clumps selected from the ATLASGAL catalogue with the IRAM telescope in an effort to identify a robust sample of massive starless clumps. We have used the HCO+ and HNC (1-0) transitions to identify clumps associated with infall motion and the SiO (2-1) transition to identity outflow candidates. We have found blue asymmetric line profile in 65 per cent of the sample, and have measured the infall velocities and mass infall rates (0.6–36 × 10−3 M⊙ yr−1) for 33 of these clumps. We find a trend for the mass infall rate decreasing with an increase of bolometric luminosity to clump mass, i.e. star formation within the clumps evolves. Using the SiO 2-1 line, we have identified good outflow candidates. Combining the infall and outflow tracers reveals that 67 per cent of quiescent clumps are already undergoing gravitational collapse or are associated with star formation; these clumps provide us with our best opportunity to determine the initial conditions and study the earliest stages of massive star formation. Finally, we provide an overview of a systematic high-resolution ALMA study of quiescent clumps selected that allows us to develop a detailed understanding of earliest stages and their subsequent evolution. 
    more » « less
  4. Abstract In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way’s Galactic Center. We identify dense structures using the CMZoom 1.3 mm dust continuum catalog of objects with typical radii of ∼0.1 pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70μm from the Midcourse Space Experiment, Spitzer, Herschel, and SOFIA, cataloged young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the Central Molecular Zone (CMZ) of ∼0.08Myr−1over the next few 105yr. We calculate upper and lower limits on the CMZ’s incipient SFR of ∼0.45 and ∼0.05Myr−1,respectively, spanning roughly equal to and several times greater than other estimates of CMZ’s recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ≳75% of high-mass star formation is found in regions above a column density ratio (NSMA/NHerschel) of ∼1.5. Finally, we highlight the detection ofatoll sources, a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing Hiiregions in the process of destroying their envelopes. 
    more » « less
  5. ABSTRACT We use new HCN(1–0) data from the ACA Large-sample Mapping Of Nearby galaxies in Dense gas (ALMOND) survey to trace the kpc-scale molecular gas density structure and CO(2–1) data from the Physics at High Angular resolution in Nearby GalaxieS–Atacama Large Millimeter/submillimeter Array (PHANGS–ALMA) to trace the bulk molecular gas across 25 nearby star-forming galaxies. At 2.1 kpc scale, we measure the density-sensitive HCN/CO line ratio and the star formation rate (SFR)/HCN ratio to trace the star formation efficiency in the denser molecular medium. At 150 pc scale, we measure structural and dynamical properties of the molecular gas via CO(2–1) line emission, which is linked to the lower resolution data using an intensity-weighted averaging method. We find positive correlations (negative) of HCN/CO (SFR/HCN) with the surface density, the velocity dispersion, and the internal turbulent pressure of the molecular gas. These observed correlations agree with expected trends from turbulent models of star formation, which consider a single free-fall time gravitational collapse. Our results show that the kpc-scale HCN/CO line ratio is a powerful tool to trace the 150 pc scale average density distribution of the molecular clouds. Lastly, we find systematic variations of the SFR/HCN ratio with cloud-scale molecular gas properties, which are incompatible with a universal star formation efficiency. Overall, these findings show that mean molecular gas density, molecular cloud properties, and star formation are closely linked in a coherent way, and observations of density-sensitive molecular gas tracers are a useful tool to analyse these variations, linking molecular gas physics to stellar output across galaxy discs. 
    more » « less