skip to main content


Title: Measurements of Iceberg Melt Rates Using High‐Resolution GPS and Iceberg Surface Scans
Abstract

Increasing freshwater input to the subpolar North Atlantic through iceberg melting can influence fjord‐scale to basin‐scale ocean circulation. However, the magnitude, timing, and distribution of this freshwater have been challenging to quantify due to minimal direct observations of subsurface iceberg geometry and melt rates. Here we present novel in situ methods capturing iceberg change at high‐temporal and ‐spatial resolution using four high‐precision GPS units deployed on two large icebergs (>500 m length). In combination with measurements of surface and subsurface geometry, we calculate iceberg melt rates between 0.10 and 0.27 m/d over the 9‐day survey. These melt rates are lower than those proposed in previous studies, likely due to using individual subsurface iceberg geometries in calculations. In combining these new measurements of iceberg geometry and melt rate with the broad spatial coverage of remote sensing, we can better predict the impact of increasing freshwater injection from the Greenland Ice Sheet.

 
more » « less
PAR ID:
10442834
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changes in iceberg calving fluxes and oceanographic conditions around Antarctica have likely influenced the spatial and temporal distribution of iceberg fresh water fluxes to the surrounding ocean basins. However, Antarctic iceberg melt rate estimates have been limited to very large icebergs in the open ocean. Here we use a remote-sensing approach to estimate iceberg melt rates from 2011 to 2022 for 15 study sites around Antarctica. Melt rates generally increase with iceberg draft and follow large-scale variations in ocean temperature: maximum melt rates for the western peninsula, western ice sheet, eastern ice sheet and eastern peninsula are ~50, ~40, ~5 and ~5 m a−1, respectively. Iceberg melt sensitivity to thermal forcing varies widely, with a best-estimate increase in melting of ~24 m a−1°C−1and range from near-zero to ~100 m a−1°C−1. Variations in water shear likely contribute to the apparent spread in thermal forcing sensitivity across sites. Although the sensitivity of iceberg melt rates to water shear prevents the use of melt rates as a proxy to infer coastal water mass temperature variability, additional coastal iceberg melt observations will likely improve models of Southern Ocean fresh water fluxes and have potential for subglacial discharge plume mapping.

     
    more » « less
  2. Abstract Marine-terminating glaciers on the Antarctic Peninsula (AP) have retreated, accelerated and thinned in response to climate change in recent decades. Ocean warming has been implicated as a trigger for these changes in glacier dynamics, yet little data exist near glacier termini to assess the role of ocean warming here. We use remotely-sensed iceberg melt rates seaward of two glaciers on the eastern and six glaciers on the western AP from 2013 to 2019 to explore connections between variations in ocean conditions and glacier frontal ablation. We find iceberg melt rates follow regional ocean temperature variations, with the highest melt rates (mean ≈ 10 cm d −1 ) at Cadman and Widdowson glaciers in the west and the lowest melt rates (mean ≈ 0.5 cm d −1 ) at Crane Glacier in the east. Near-coincident glacier frontal ablation rates from 2014 to 2018 vary from ~450 m a −1 at Edgeworth and Blanchard glaciers to ~3000 m a −1 at Seller Glacier, former Wordie Ice Shelf tributary. Variations in iceberg melt rates and glacier frontal ablation rates are significantly positively correlated around the AP (Spearman's ρ = 0.71, p -value = 0.003). We interpret this correlation as support for previous research suggesting submarine melting of glacier termini exerts control on glacier frontal dynamics around the AP. 
    more » « less
  3. The calving of icebergs accounts for a significant fraction of the mass loss from both the Antarctic and Greenland ice sheets. Iceberg melting affects the water properties impacting sea ice formation, local circulation and biological activity. Laboratory experiments have investigated the effects of the Earth’s rotation on iceberg melting and the possible formation of Taylor columns (TCs) underneath icebergs. It is found that at high Rossby number, $Ro$ , when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation. As $Ro$ decreases, the melt rate shows an increasing trend, which is expected to reverse for very low $Ro$ . This behaviour is explained by considering the integrated horizontal velocity at the base of the iceberg. For moderate $Ro$ , a partial TC is formed and its effective blocking accelerates the flow under the remainder of the iceberg, which increases the melt rate since the melting is proportional to the flow velocity. It is expected that for very low $Ro$ the melt rate decreases because, with the expansion of the TC, the region of flow acceleration occurs away from the base of the iceberg. For low free stream velocity the freshwater produced by the ice melting introduces another dynamical effect. It is observed that there is a threshold free stream velocity below which the melt rate is constant. This is explained with the formation of a gravity current at the base of the iceberg that insulates it from the free flow and controls its melting. 
    more » « less
  4. Abstract

    Iceberg discharge is estimated to account for up to 50% of the freshwater flux delivered to glacial fjords. The amount, timing, and location of iceberg melting impacts fjord‐water circulation and heat budget, with implications for glacier dynamics, nutrient cycling, and fjord productivity. We use Sentinel‐2 imagery to examine seasonal variations in freshwater flux from open‐water icebergs in Sermilik Fjord, Greenland during summer and fall of 2017–2018. Using iceberg velocities derived from visual‐tracking and changes in total iceberg volume with distance down‐fjord from Helheim Glacier, we estimate maximum average two‐month full‐fjord iceberg‐derived freshwater fluxes of ~1,060 ± 615, 1,270 ± 735, 1,200 ± 700, 3,410 ± 1,975, and 1,150 ± 670 m3/s for May–June, June–July, July–August, August–September, and September–November, respectively. Fluxes decrease with distance down‐fjord, and on average, 86–91% of iceberg volume is lost before reaching the fjord mouth. This method provides a simple, invaluable tool for monitoring seasonal and interannual iceberg freshwater fluxes across a range of Greenlandic fjords.

     
    more » « less
  5. Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of submarine melting along iceberg sides on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the flow magnitude and consequent behavior of melt plumes (side-attached or side-detached), with correspondingly different meltwater spreading characteristics. When this velocity dependence is included in melt parameterizations, melt rates estimated for observed icebergs in the attached regime increase, consistent with observed iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord. Further, depending on the regime, iceberg meltwater may either be confined to a surface layer or distributed over the iceberg draft. 
    more » « less