skip to main content

Title: Modeling the nanoindentation response of silicate glasses by peridynamic simulations

Nanoindentation is a widely used method to probe the mechanical properties of glasses. However, interpreting glasses’ response to nanoindentation can be challenging due to the complex nature of the stress field under the indenter tip and the lack ofin situcharacterization techniques. Here, we present a numerical model describing the nanoindentation of an archetypical soda‐lime silicate window glass by means of peridynamic simulations. We show that, although it does not capture shear flow and permanent densification, peridynamics exhibits a good agreement with experimental nanoindentation data and offers a direct access to the stress field forming under the indenter tip.

more » « less
Award ID(s):
1826420 1826050
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of the American Ceramic Society
Page Range / eLocation ID:
p. 3531-3544
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Low-temperature plastic rheology of calcite plays a significant role in the dynamics of Earth's crust. However, it is technically challenging to study plastic rheology at low temperatures because of the high confining pressures required to inhibit fracturing. Micromechanical tests, such as nanoindentation and micropillar compression, can provide insight into plastic rheology under these conditions because, due to the small scale, plastic deformation can be achieved at low temperatures without the need for secondary confinement. In this study, nanoindentation and micropillar compression experiments were performed on oriented grains within a polycrystalline sample of Carrara marble at temperatures ranging from 23 to 175 °C, using a nanoindenter. Indentation hardness is acquired directly from nanoindentation experiments. These data are then used to calculate yield stress as a function of temperature using numerical approaches that model the stress state under the indenter. Indentation data are complemented by uniaxial micropillar compression experiments. Cylindrical micropillars ∼1 and ∼3 μm in diameter were fabricated using a focused ion beam-based micromachining technique. Yield stress in micropillar experiments is determined directly from the applied load and micropillar dimensions. Mechanical data are fit to constitutive flow laws for low-temperature plasticity and compared to extrapolations of similar flow laws from high-temperature experiments. This study also considered the effects of crystallographic orientation on yield stress in calcite. Although there is a clear orientation dependence to plastic yielding, this effect is relatively small in comparison to the influence of temperature.

    more » « less
  2. Abstract

    The glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro‐scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3melts. The resulting compositions were determined to be LiPO3‐3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short‐range order structures of the different resulting compositions were characterized by infrared, Raman,31P magic angle spinning nuclear magnetic resonance, and X‐ray photoelectron spectroscopies. Instrumented nano‐indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co‐exist in the glasses in about the same amounts forz ≤ 0.36, the limit of N content in most previous studies. For glasses withz > 0.36, it was found that the fraction of the Ntincreased significantly while the fraction of Ndcorrespondingly decreased. The incorporation of nitrogen increased both the elastic modulus and hardness of the glass by approximately a factor of 1.5 when N/P ratio reaches 0.75. At the same time, an apparent embrittlement of the glass was observed due to nitridation, which was revealed by nanoindentation with an extra sharp nanoindenter tip.

    more » « less
  3. The stiffness in the top surface of many biological entities like cornea or articular cartilage, as well as chemically cross-linked synthetic hydrogels, can be significantly lower or more compliant than the bulk. When such a heterogeneous surface comes into contact, the contacting load is distributed differently from typical contact models. The mechanical response under indentation loading of a surface with a gradient of stiffness is a complex, integrated response that necessarily includes the heterogeneity. In this work, we identify empirical contact models between a rigid indenter and gradient elastic surfaces by numerically simulating quasi-static indentation. Three key case studies revealed the specific ways in which (I) continuous gradients, (II) laminate-layer gradients, and (III) alternating gradients generate new contact mechanics at the shallow-depth limit. Validation of the simulation-generated models was done by micro- and nanoindentation experiments on polyacrylamide samples synthesized to have a softer gradient surface layer. The field of stress and stretch in the subsurface as visualized from the simulations also reveals that the gradient layers become confined, which pushes the stretch fields closer to the surface and radially outward. Thus, contact areas are larger than expected, and average contact pressures are lower than predicted by the Hertz model. The overall findings of this work are new contact models and the mechanisms by which they change. These models allow a more accurate interpretation of the plethora of indentation data on surface gradient soft matter (biological and synthetic) as well as a better prediction of the force response to gradient soft surfaces. This work provides examples of how gradient hydrogel surfaces control the subsurface stress distribution and loading response. 
    more » « less
  4. Abstract

    As a means to elucidate the mechanical stress effect on the durability of soda lime silicate (SLS) float glass, a thin glass plate under flexural stress was investigated with X‐ray photoelectron spectroscopy (XPS), specular reflectance infrared (SR‐IR) spectroscopy, nanoindentation, and tribo‐testing. A lab‐built four‐point bending rig was employed to create compressive or tensile stress (around 40 MPa) on the air‐side surface of SLS glass. XPS analysis showed that electric field‐induced sodium ion migration is greatly enhanced in both compressive and tensile stress surfaces. The SR‐IR analysis of the Si‐O‐Si stretch mode revealed that the structural distortion of the silicate network appears to be larger under compressive stress than tensile stress. The elastic and plastic responses of the SLS surface to nanoindentation were significantly altered under the flexural stress conditions even though the magnitude of the flexural stress was less than 0.7% of the applied indentation stress. Compared to the stress‐free surface, the resistance to mechanochemical wear at 90% relative humidity deteriorated under the compressive stress condition, while it just became more scattered under the tensile stress condition. Even though the applied flexural stress was very small, its impact on chemical and structural properties could be surprisingly large. Combining all results in this study and previously published works suggested that the changes observed in nanoindentation and mechanochemical wear behaviors may be associated with the strain in the Si‐O bonds of the silicate network.

    more » « less
  5. Abstract

    The onset of yielding and the related atomic-scale plastic flow behavior of bulk metallic glasses at room temperature have not been fully understood due to the difficulty in performing the atomic-scale plastic deformation experiments needed to gain direct insight into the underlying fundamental deformation mechanisms. Here we overcome these limitations by combining a unique sample preparation method with atomic force microscopy-based indentation, which allows study of the yield stress, onset of yielding, and atomic-scale plastic flow of a platinum-based bulk metallic glass in volumes containing as little as approximately 1000 atoms. Yield stresses markedly higher than in conventional nanoindentation testing were observed, surpassing predictions from current models that relate yield stress to tested volumes; subsequent flow was then established to be homogeneous without exhibiting collective shear localization or loading rate dependence. Overall, variations in glass properties due to fluctuations of free volume are found to be much smaller than previously suggested.

    more » « less