ABSTRACT New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers containN‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring.N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 70–76
more »
« less
The synthesis of cyclic polymers by olefin metathesis: Achievements and challenges
ABSTRACT Cyclic polymers have drawn considerable interest for their peculiar physical properties in comparison to linear polymers, despite their equivalent compositions. Synthetically, cyclic polymers can be accessed through either macrocyclic ring‐closure or by ring‐expansion polymerization, but the main challenge with either method is the production of highly pure cyclic polymer samples. This highlight describes advances in the area of cyclic polymer synthesis, with a particular focus on ring‐expansion metathesis polymerization. Methods for characterizing cyclic polymers and assessing their purity are also discussed in order to emphasize the need for additional robust and reliable methods for synthesizing and studying topologically complex macromolecules. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 228–242
more »
« less
- Award ID(s):
- 1807154
- PAR ID:
- 10442944
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science Part A: Polymer Chemistry
- Volume:
- 57
- Issue:
- 3
- ISSN:
- 0887-624X
- Page Range / eLocation ID:
- p. 228-242
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Carbohydrates are the fundamental building blocks of many natural polymers, their wide bioavailability, high chemical functionality, and stereochemical diversity make them attractive starting materials for the development of new synthetic polymers. In this work, one such carbohydrate,d‐glucopyranoside, was utilized to produce a hydrophobic five‐membered cyclic carbonate monomer to afford sugar‐based amphiphilic copolymers and block copolymers via organocatalyzed ring‐opening polymerizations with 4‐methylbenzyl alcohol and methoxy poly(ethylene glycol) as initiator and macroinitiator, respectively. To modulate the amphiphilicities of these polymers acidic benzylidene cleavage reactions were performed to deprotect the sugar repeat units and present hydrophilic hydroxyl side chain groups. Assembly of the polymers under aqueous conditions revealed interesting morphological differences, based on the polymer molar mass and repeat unit composition. The initial polymers, prior to the removal of the benzylidenes, underwent a morphological change from micelles to vesicles as the sugar block length was increased, causing a decrease in the hydrophilic–hydrophobic ratio. Deprotection of the sugar block increased the hydrophilicity and gave micellar morphologies. This tunable polymeric platform holds promise for the production of advanced materials for implementation in a diverse range of applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 432–440more » « less
-
Abstract The development of chemically recyclable polymers promises a closed‐loop approach towards a circular plastic economy but still faces challenges in structure/property diversity and depolymerization selectivity. Here we report the first successful coordination ring‐opening polymerization of 4,5‐trans‐cyclohexyl‐fused γ‐butyrolactone (M1) with lanthanide catalysts at room temperature, producing P(M1) withMnup to 89 kg mol−1, high thermal stability, and a linear or cyclic topology. The same catalyst also catalyses selective depolymerization of P(M1) back toM1exclusively at 120 °C. This coordination polymerization is also living, enabling the synthesis of well‐defined block copolymer.more » « less
-
ABSTRACT Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381more » « less
-
Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanesABSTRACT Crosslinked polyhydroxyurethane (PHU) networks synthesized from difunctional six‐membered cyclic carbonates and triamines are reprocessable at elevated temperatures through transcarbamoylation reactions. Here we study the structural effects on reprocessability and stress relaxation in crosslinked PHUs. Crosslinked PHUs derived frombis(five‐membered cyclic carbonates) are shown to decompose at temperatures needed for reprocessing, likely via initial reversion of the PHU linkage and subsequent side reactions of the liberated amine and cyclic carbonate. Therefore, several six‐membered cyclic carbonate‐based PHUs with varying polymer backbones and crosslink densities were synthesized. These networks show large differences in the Arrhenius activation energy of stress relaxation (from 99 to 136 kJ/mol) that depend on the network structure, suggesting that transcarbamoylation reactions may be highly affected by both chemical and mechanical effects. Furthermore, all crosslinked PHUs derived from six‐membered cyclic carbonates show mechanical properties typical of thermoset polymers, but recovered as much as 80% of their as‐synthesized tensile properties after elevated temperature compression molding. These studies provide significant insight into factors affecting the reprocessability of PHUs and inform design criteria for the future synthesis of sustainable and repairable crosslinked PHUs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2017,134, 44984.more » « less
An official website of the United States government
