skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Impact of Stem Size on Turbulence and Sediment Resuspension Under Unidirectional Flow
Abstract

Laboratory experiments examined the impact of model vegetation on turbulence and resuspension. The turbulent kinetic energy increased with increasing velocity and increasing solid volume fraction, but did not depend on stem diameter. The vegetation‐generated turbulence dominated the total turbulence inside canopies. For the same sediment size, the critical turbulent kinetic energy at which resuspension was initiated was the same for both vegetated and bare beds, which resulted in a critical velocity that decreased with increasing solid volume fraction. Both the critical turbulence and critical velocity for resuspension had no dependence on stem diameter. However, for denser canopies and/or a canopy of smaller stem size, a greater energy slope is required to initiate resuspension. This study provides a way to predict the onset of resuspension in regions with vegetation, an important threshold for sediment transport and landscape evolution.

 
more » « less
NSF-PAR ID:
10442983
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
3
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Laboratory experiments examined the impact of model vegetation on wave‐driven resuspension. Model canopies were constructed from cylinders with three diameters (d= 0.32, 0.64, and 1.26 cm) and 12 densities (cylinders/m2) up to a solid volume fraction (ϕ) of 10%. The sediment bed consisted of spherical grains withd50= 85 μm. For each experiment, the wave velocity was gradually adjusted by increasing the amplitude of 2‐s waves in a stepwise fashion. A Nortek Vectrino sampled the velocity atz= 1.3 cm above the bed. The critical wave orbital velocity for resuspension was inferred from records of suspended sediment concentration (measured with optical backscatter) as a function of wave velocity. The critical wave velocity decreased with increasing solid volume fraction. The reduction in critical wave velocity was linked to stem‐generated turbulence, which, for the same wave velocity, increased with increasing solid volume fraction. The measured turbulence was consistent with a wave‐modified version of a stem‐turbulence model. The measurements suggested that a critical value of turbulent kinetic energy was needed to initiate resuspension, and this was used to define the critical wave velocity as a function of solid volume fraction. The model predicted the measured critical wave velocity for stem diametersd= 0.64 to 2 cm. Combining the critical wave velocity with an existing model for wave damping defined the meadow size for which wave damping would be sufficient to suppress wave‐induced sediment suspension within the interior of the meadow.

     
    more » « less
  2. Abstract

    Vegetation provides habitat and nature‐based solutions to coastal flooding and erosion, drawing significant interest in its restoration, which requires an understanding of sediment transport and retention. Laboratory experiments examined the influence of stem diameter and arrangement on bedload sediment transport by considering arrays of different stem diameter and mixed diameters. Bedload transport rate was observed to depend on turbulent kinetic energy, with no dependence on stem diameter, which was shown to be consistent with the impulse model for sediment entrainment. Existing predictors of bedload transport for bare beds, based on bed shear stress, were recast in terms of turbulence. The new turbulence‐based model predicted sediment transport measured in model canopies across a range of conditions drawn from several previous studies. A prediction of turbulence based on biomass and velocity was also described, providing an important step toward predicting turbulence and bedload transport in canopies of real vegetation morphology.

     
    more » « less
  3. Abstract

    The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy,kt, in vegetated channels from channel average velocityUand vegetation volume fractionϕwas validated for mobile sediment beds. Second, using data from several studies, the predictedktwas shown to be a good predictor of bed load transport rate,Qs, allowingQsto be predicted fromUandϕfor vegetated channels. The control ofQsbyktwas explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated withkt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasingϕ, again suggesting that vegetation facilitated the formation of sheet flow.

     
    more » « less
  4. The lattice Boltzmann method is employed to conduct direct numerical simulations of turbulent open channel flows with the presence of finite-size spherical sediment particles. The uniform particles have a diameter of approximately 18 wall units and a density of ρp=2.65ρf, where ρp and ρf are the particle and fluid densities, respectively. Three low particle volume fractions ϕ=0.11%, 0.22%, and 0.44% are used to investigate the particle-turbulence interactions. Simulation results indicate that particles are found to result in a more isotropic distribution of fluid turbulent kinetic energy (TKE) among different velocity components, and a more homogeneous distribution of the fluid TKE in the wall-normal direction. Particles tend to accumulate in the near-wall region due to the settling effect and they preferentially reside in low-speed streaks. The vertical particle volume fraction profiles are self-similar when normalized by the total particle volume fractions. Moreover, several typical transport modes of the sediment particles, such as resuspension, saltation, and rolling, are captured by tracking the trajectories of particles. Finally, the vertical profiles of particle concentration are shown to be consistent with a kinetic model. 
    more » « less
  5. null (Ed.)
    Mean flow and turbulence measurements collected in a shallow Halodule wrightii shoal grass fringe highlighted significant heterogeneity in hydrodynamic effects over relatively small spatial scales. Experiments were conducted within the vegetation canopy (~4 cm above bottom) for relatively sparse (40% cover) and dense (70% cover) vegetation, with reference measurements collected near the bed above bare sediment. Significant benthic velocity shear was observed at all sample locations, with canopy shear layers that penetrated nearly to the bed at both vegetated sites. Turbulent shear production (P) was balanced by turbulent kinetic energy dissipation (ϵ) at all sample locations (P/ϵ≈1), suggesting that stem-generated turbulence played a minor role in the overall turbulence budget. While the more sparsely vegetated sample site was associated with enhanced channel-to-shore velocity attenuation (71.4 ± 1.0%) relative to flows above bare sediment (51.7 ± 2.2%), unexpectedly strong cross-shore currents were observed nearshore in the dense canopy (VNS), with magnitudes that were nearly twice as large as those measured in the main channel (VCH; VNS/VCH¯ = 1.81 ± 0.08). These results highlight the importance of flow steering and acceleration for within- and across-canopy transport, especially at the scale of individual vegetation patches, with important implications for nutrient and sediment fluxes. Importantly, this work represents one of the first hydrodynamic studies of shoal grass fringes in shallow coastal estuaries, as well as one of the only reports of turbulent mixing within H. wrightii canopies. 
    more » « less