skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing primary production in a changing estuary: A mass balance modeling approach
Abstract Estuarine primary production (PP) is a critical rate process for understanding ecosystem function and response to environmental change. PP is fundamentally linked to estuarine eutrophication, and as such should respond to ongoing efforts to reduce nutrient inputs to estuaries globally. However, concurrent changes including warming, altered hydrology, reduced input of sediments, and emergence of harmful algal blooms (HABs) could interact with nutrient management to produce unexpected changes in PP. Despite its fundamental importance, estuarine PP is rarely measured. We reconstructed PP in the York River Estuary with a novel mass balance model based on dissolved inorganic nitrogen (DIN) for the period 1994–2018. Modeled PP compared well to previous estimates and demonstrated a long‐term increase and down‐estuary shift over the study period. This increase occurred despite reductions in discharge, flushing time, DIN loading, and DIN standing stock over the same period. Increased PP corresponded to increased water temperature, decreased turbidity and light attenuation, and increased photic depth and assimilation ratio, suggesting that phytoplankton in the York River Estuary have become more efficient at converting nutrients into biomass primarily due to a release from light limitation. The increase in PP also coincided with the increasing occurrence of late summer HABs in the lower York River Estuary, including the emergence of a second bloom‐forming dinoflagellate in 2007. Results demonstrate how changes concurrent with nutrient management could alter expected system responses and illustrate the utility of the mass balance approach for estimating critical rate processes like PP in the absence of observations.  more » « less
Award ID(s):
1737258 1655221
PAR ID:
10443378
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
6
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2535-2546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Subterranean estuaries (STEs) form at the land‐sea boundary where groundwater and seawater mix. These biogeochemically reactive zones influence groundwater‐borne nutrient concentrations and speciation prior to export via submarine groundwater discharge (SGD). We examined a STE located along the York River Estuary (YRE) to determine if SGD delivers dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to the overlying water. We assessed variations in STE geochemical profiles with depth across locations, times, and tidal stages, estimated N removal along the STE flow path, measured hydraulic gradients to estimate SGD, and calculated potential nutrient fluxes. Salinity, dissolved oxygen (DO), DIN, and DIP varied significantly with depth and season (p < 0.05), but not location or tidal stage. Ammonium dominated the DIN pool deep in the STE. Moving toward the sediment surface, ammonium concentrations decreased as nitrate and DO concentrations increased, suggesting nitrification. Potential sediment N removal rates mediated by denitrification were <8 mmoles N m−2 d−1. The total groundwater discharge rate was 38 ± 11 L m−2 d−1; discharge followed tidal and seasonal patterns. Net SGD nutrient fluxes were 0.065–3.2 and 0.019–0.093 mmoles m−2 d−1for DIN and DIP, respectively. However, microbial N removal in the STE may attenuate 0.58% to >100% of groundwater DIN. SGD fluxes were on the same order of magnitude as diffusive benthic fluxes but accounted for <10% of the nutrients delivered by fluvial advection in the YRE. Our results indicate the importance of STE biogeochemical transformations to SGD flux estimations and their role in coastal eutrophication and nutrient dynamics. 
    more » « less
  2. Abstract Dissolved inorganic nutrient concentrations in the surface waters (0 to 5 m) of the Northern Gulf of Mexico (NGoM) were analyzed from 1985 to 2019 (> 10,000 observations) to determine spatiotemporal trends and their connection to nutrients supplied from the Mississippi/Atchafalaya River (MAR). In the NGoM, annual mean dissolved inorganic P (DIP) concentrations increased significantly over time, while dissolved inorganic N (DIN) concentrations showed no temporal trend. With greater salinity, mean DIN:DIP decreased from above the Redfield ratio of 16 to below it, reflecting DIN losses and the more conservative behavior of DIP with salinity. Over the same time period, annual mean P (total dissolved P, DIP, dissolved organic P) loading from the MAR to the NGoM significantly increased, annual mean DIN and total dissolved N loading showed no temporal trend, and dissolved organic N loading significantly decreased. Though DIP increased in the MAR, MAR DIP alone was insufficient to explain the surface distribution of DIP with salinity. Therefore, increases in surface DIP in the NGoM are not simply a reflection of increasing MAR DIP, pointing to temporal changes in other DIP sources. The increase in NGoM DIP suggests greater N limitation for phytoplankton, with implications for N fixation and nutrient management. 
    more » « less
  3. Abstract Variations in estuarine carbonate chemistry can have critical impacts on marine calcifying organisms, yet the drivers of this variability are difficult to quantify from observations alone, due to the strong spatiotemporal variability of these systems. Terrestrial runoff and wetland processes vary year to year based on local precipitation, and estuarine processes are often strongly modulated by tides. In this study, a 3D-coupled hydrodynamic-biogeochemical model is used to quantify the controls on the carbonate system of a coastal plain estuary, specifically the York River estuary. Experiments were conducted both with and without tidal wetlands. Results show that on average, wetlands account for 20–30% of total alkalinity (TA) and dissolved inorganic carbon (DIC) fluxes into the estuary, and double-estuarine CO2outgassing. Strong quasi-monthly variability is driven by the tides and causes fluctuations between net heterotrophy and net autotrophy. On longer time scales, model results show that in wetter years, lower light availability decreases primary production relative to biological respiration (i.e., greater net heterotrophy) resulting in substantial increases in CO2outgassing. Additionally, in wetter years, advective exports of DIC and TA to the Chesapeake Bay increase by a factor of three to four, resulting in lower concentrations of DIC and TA within the estuary. Quantifying the impacts of these complex drivers is not only essential for a better understanding of coastal carbon and alkalinity cycling, but also leads to an improved assessment of the health and functioning of coastal ecosystems both in the present day and under future climate change. 
    more » « less
  4. Abstract Subsidence after a subduction zone earthquake can cause major changes in estuarine bathymetry. Here, we quantify the impacts of earthquake‐induced subsidence on hydrodynamics and habitat distributions in a major system, the lower Columbia River Estuary, using a hydrodynamic and habitat model. Model results indicate that coseismic subsidence increases tidal range, with the smallest changes at the coast and a maximum increase of ∼10% in a region of topographic convergence. All modeled scenarios reduce intertidal habitat by 24%–25% and shifts ∼93% of estuarine wetlands to lower‐elevation habitat bands. Incorporating dynamic effects of tidal change from subsidence yields higher estimates of remaining habitat by multiples of 0–3.7, dependent on the habitat type. The persistent tidal change and chronic habitat disturbance after an earthquake poses strong challenges for estuarine management and wetland restoration planning, particularly when coupled with future sea‐level rise effects. 
    more » « less
  5. null (Ed.)
    The use of nutrients by diverse phytoplankton communities in estuarine systems, and their response to changes in physical and biogeochemical processes in these natural systems, is a significant ongoing area of research. We used a whole ecosystem 15NO3− tracer experiment to determine the uptake of different nitrogen (N) forms in phytoplankton functional groups over a mid- to neap tidal cycle in a salt marsh creek in Plum Island Estuary, Massachusetts, USA. We quantified the biomass and δ15N for three groups corresponding to micro- (20–200 μm; microP), nano- (3–20 μm; nanoP), and picophytoplankton (< 3 μm; picoP). All three size classes showed distinct use of recycled N sources throughout the 11-day sampling period and minimal direct assimilation of the 15NO3− tracer. MicroP consistently used high amounts of creek-derived 15NH4+, even with a shift at neap tide from diatom- to dinoflagellate-dominated communities (including members of the harmful genus Alexandrium). NanoP use of recycled 15NH4+ increased over the mid-neap tidal cycle, while picoP use decreased. Both biomass and NH4+ use (as highest δ15N values) of all size groups were maximized during neap tide. This study demonstrates partitioning of recycled N use among size-based phytoplankton groups in the estuary, with distinct effects of tidal cycle on the nutrient uptake of each group, and with important implications for the roles of diverse phytoplankton communities in estuarine nutrient cycling. 
    more » « less