skip to main content


This content will become publicly available on August 16, 2024

Title: Host exposure to a common pollutant can influence diversity–disease relationships
Abstract

Hosts and parasites are embedded in communities where species richness and composition can influence disease outcomes (diversity–disease relationships). The direction and magnitude of diversity–disease relationships are influenced by variation in competence (ability to support and transmit infections) of hosts in a community. However, host susceptibility to parasites, which mediates host competence, is not static and is influenced by environmental factors, including pollutants. Despite the role that pollutants can play in augmenting host susceptibility, how pollutants influence diversity–disease dynamics is not well understood.

Using an amphibian–trematode model, we tested how NaCl influences diversity–disease dynamics. We predicted that NaCl exposure can alter relative susceptibility of host species to trematodes, leading to cascading effects on the diversity–disease relationship. To test these predictions, we exposed hosts to benign or NaCl environments and generated communities that differed in number and composition of host species. We exposed these communities to trematodes and measured disease outcomes at the community (total infections across all hosts within a community) and species levels (average number of infections per host species within a community).

Host species differed in their relative susceptibility to trematodes when exposed to NaCl. Consequently, at the community level (total infections across all hosts within a community), we only detected diversity–disease relationships (dilution effects) in communities where hosts were exposed to NaCl. At the species level, disease outcomes (average number of infections/species) and whether multi‐species communities supported lower number of infections relative to single‐species communities depended on community composition. Notably, however, as with overall community infection, diversity–disease relationships only emerged when hosts were exposed to NaCl.

Synthesis.Pollutants are ubiquitous in nature and can influence disease dynamics across a number of host–parasite systems. Here, we show that NaCl exposure can alter the relative susceptibility of host species to parasites, influencing the relationship between biodiversity and disease at both community and species levels. Collectively, our study contributes to the limited knowledge surrounding environmental mediators of host susceptibility and their influence on diversity–disease dynamics.

 
more » « less
NSF-PAR ID:
10443381
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
ISSN:
0021-8790
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding parasite transmission in communities requires knowledge of each species' capacity to support transmission. This property, ‘competence’, is a critical currency for modelling transmission under community change and for testing diversity–disease theory. Despite the central role of competence in disease ecology, we lack a clear understanding of the factors that generate competence and drive its variation.

    We developed novel conceptual and quantitative approaches to systematically quantify competence for a multi‐host, multi‐parasite community. We applied our framework to an extensive dataset: five amphibian host species exposed to four parasitic trematode species across five ecologically realistic exposure doses. Together, this experimental design captured 20 host–parasite interactions while integrating important information on variation in parasite exposure. Using experimental infection assays, we measured multiple components of the infection process and combined them to produce competence estimates for each interaction.

    With directly estimated competence values, we asked which components of the infection process best explained variation in competence: barrier resistance (the initial fraction of administered parasites blocked from infecting a host), internal clearance (the fraction of established parasites lost over time) or pre‐transmission mortality (the probability of host death prior to transmission). We found that variation in competence among the 20 interactions was best explained by differences in barrier resistance and pre‐transmission mortality, underscoring the importance of host resistance and parasite pathogenicity in shaping competence.

    We also produced dose‐integrated estimates of competence that incorporated natural variation in exposure to address questions on the basis and extent of variation in competence. We found strong signals that host species identity shaped competence variation (as opposed to parasite species identity). While variation in infection outcomes across hosts, parasites, individuals and doses was considerable, individual heterogeneity was limited compared to among‐species differences. This finding highlights the robustness of our competence estimates and suggests that species‐level values may be strong predictors for community‐level transmission in natural systems.

    Competence emerges from distinct underlying processes and can have strong species‐level characteristics; thus, this property has great potential for linking mechanisms of infection to epidemiological patterns.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    The densities of highly competent plant hosts (i.e. those that are susceptible to and successfully transmit a pathogen) may shape pathogen community composition and disease severity, altering disease risk and impacts. Life history and evolutionary history can influence host competence; longer lived species tend to be better defended than shorter lived species and pathogens adapt to infect species with which they have longer evolutionary histories. It is unclear, however, how the densities of species that differ in competence due to life and evolutionary histories affect plant pathogen community composition and disease severity.

    We examined foliar fungal pathogens of two host groups in a California grassland: native perennial and non‐native annual grasses. We first characterized pathogen community composition and disease severity of the two host groups to approximate differences in competence. We then used observational and manipulated gradients of native perennial and non‐native annual grass densities to assess the effects of each host group on pathogen community composition and disease severity in 1‐m2plots.

    Native perennial and non‐native annual grasses hosted distinct pathogen communities but shared generalist pathogens. Native perennial grasses experienced 26% higher disease severity than non‐native annuals. Only the observational gradient of native perennial grass density affected disease severity; there were no other significant relationships between host group density and either disease severity or pathogen community composition.

    Synthesis. The life and evolutionary histories of grasses likely influence their competence for different pathogen species, exemplified by distinct pathogen communities and differences in disease severity. However, there was limited evidence that the density of either host group affected pathogen community composition or disease severity. Therefore, competence for different pathogens likely shapes pathogen community composition and disease severity but may not interact with host density to alter disease risk and impacts at small scales.

     
    more » « less
  3. Abstract

    Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifyingβ‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease.

    To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog,Pseudacris regillaand the California newt,Taricha torosa) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ‐diversity) was composed of within‐host parasite richness (α‐diversity) and turnover (β‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined howβ‐diversity varied across time at each biological scale.

    Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition.

    Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts.

     
    more » « less
  4. Abstract

    The likelihood an individual becomes infected depends on the community in which it is embedded. For environmentally transmitted parasites, host community composition can alter host density, the density of parasites that hosts encounter in the environment, and the dose to which hosts are subsequently exposed. While some multi‐host theory incorporates some of these factors (e.g., competition among hosts), it does not currently consider the nonlinear relationships between parasite exposure dose and per‐propagule infectivity (dose–infectivity relationships), between exposure dose and infected host mortality (dose–mortality relationships), and between exposure dose and parasite propagule excretion (dose–excretion relationships). This makes it difficult to predict the impact of host species on one another’s likelihood of infection. To understand the implications of these nonlinear dose relationships for multi‐host communities, we first performed a meta‐analysis on published dose–infectivity experiments to quantify the proportion of accelerating, linear, or decelerating dose–infectivity relationships; we found that most experiments demonstrated decelerating dose–infectivity relationships. We then explored how dose–infectivity, dose–mortality, and dose–excretion relationships might alter the impact of heterospecific host density on infectious propagule density, infection prevalence, and density of a focal host using two‐host, one‐parasite models. We found that dose relationships either decreased the magnitude of the impact of heterospecific host density on propagule density and infection prevalence via negative feedback loops (decelerating dose–infectivity relationships, positive dose–mortality relationships, and negative dose–excretion relationships), or increased the magnitude of the impact of heterospecific host density on infection prevalence via positive feedback loops (accelerating dose–infectivity relationships and positive dose–excretion relationships). Further, positive dose–mortality relationships resulted in hosts that traditionally decrease disease (e.g., low competence, strong competitors) increasing infection prevalence, and vice versa. Finally, we found that dose relationships can create positive feedback loops that facilitate friendly competition (i.e., increased heterospecific density has a positive effect on focal host density because the reduction in disease outweighs the negative effects of interspecific competition). This suggests that without taking dose relationships into account, we may incorrectly predict the effect of heterospecific host interactions, and thus host community composition, on environmentally transmitted parasites.

     
    more » « less
  5. Abstract

    Previous theoretical work has highlighted the potential for natural enemies to mediate the coexistence of species with similar life histories via density‐dependent effects on survivorship. For plant pathogens to play this role, they must differ in their ability to infect or induce disease in different host plant species. In tropical forests characterized by high diversity, these effects must extend to phylogenetically closely related species pairs. Mortality at the seed and seedling stage strongly influences the abundance and distribution of tropical tree species, but the host preferences and spatial distributions of fungi are rarely determined.

    We examined how host species identity, relatedness and seed viability influence the composition of fungal communities associated with seeds of four co‐occurring pioneer trees (Cecropia insignis,C. longipes,C. peltataandJacaranda copaia). Seeds were buried in mesh bags in five common gardens in the understorey of a lowland tropical forest in Panama and retrieved at intervals from 1 to 30 months. A subset of the seeds in each bag was used to determine germination success. One half of each remaining seed was tested for viability; and the other half was used to culture and identify seed‐infecting fungi.

    Seeds were infected by fungi after burial. Although fungal communities differed in viable versus dead seeds, and across burial locations, community composition primarily varied as a function of plant species identity (30.7% of variation in community composition vs. 4.5% for viability and location together), even for congenericCecropiaspecies. Phylogenetic reconstruction showed that relatedness of fungi mostly reflected differences betweenJacaranda(Bignoniaceae) andCecropia(Urticaceae).

    Although the proportion of germinable seeds decreased gradually over time for all species, intraspecific variation in survival was high at the same location (e.g. ranging from 0% to 100% forC. peltata) suggesting variable exposure or susceptibility to seed pathogens.

    Synthesis. Our study provides evidence under field conditions that congeneric tree species with similar life history traits differ markedly in seed‐associated fungal communities when exposed to the same soil‐borne fungi. This is a critical first step supporting pathogen‐mediated coexistence of closely related tree species.

     
    more » « less