Introduction:A fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response. Methods:Linear peptides selected by phage display experiments that have high affinity to the monoclonal antibody of interest (“mimotopes”) usually have similar physicochemical properties to the antigen epitope corresponding to that antibody. The sequences of these linear peptides can be used to find possible epitopes on the surface of the antigen structure or a homology model of the antigen in the absence of an antigen-antibody complex structure. Results and Discussion:Herein we describe two novel methods for mapping mimotopes to epitopes. The first is a novel algorithm named MimoTree that allows for gaps in the mimotopes and epitopes on the antigen. More specifically, a mimotope may have a gap that does not match to the epitope to allow it to adopt a conformation relevant for binding to an antibody, and residues may similarly be discontinuous in conformational epitopes. MimoTree is a fully automated epitope detection algorithm suitable for the identification of conformational as well as linear epitopes. The second is an ensemble approach, which combines the prediction results from MimoTree and two existing methods.
more »
« less
Mapping of antibody epitopes based on docking and homology modeling
Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.
more »
« less
- PAR ID:
- 10443393
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Proteins: Structure, Function, and Bioinformatics
- Volume:
- 91
- Issue:
- 2
- ISSN:
- 0887-3585
- Page Range / eLocation ID:
- p. 171-182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling bivalent binding. We find large variations in these parameters across antibodies, including reach variations (22–46 nm) that exceed the physical antibody size (~15 nm). By using antigens of different physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies binding with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding the same antigen can display differences in molecular reach, substantially modulating their binding and functional properties.more » « less
-
Abstract Comparative docking is based on experimentally determined structures of protein‐protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template‐based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface‐based docking performed marginally better. The interface‐based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2‐fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure‐based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.more » « less
-
NA (Ed.)Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engage- ment of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessi- tating novel approaches to enhance performance. Here, we report the development of antibody fusion pro- teins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The comple- mentary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell acti- vation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic anti- bodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes.more » « less
-
Even though COVID-19 is no longer the primary focus of the global scientific community, its high mutation rate (nearly 30 substitutions per year) poses a threat of a potential comeback. Effective vaccines have been developed and administered to the population, ending the pandemic. Nonetheless, reinfection by newly emerging subvariants, particularly the latest JN.1 strain, remains common. The rapid mutation of this virus demands a fast response from the scientific community in case of an emergency. While the immune escape of earlier variants was extensively investigated, one still needs a comprehensive understanding of how specific mutations, especially in the newest subvariants, influence the antigenic escape of the pathogen. Here, we tested comprehensive in silico approaches to identify methods for fast and accurate prediction of antibody neutralization by various mutants. As a benchmark, we modeled the complexes of the murine antibody 2B04, which neutralizes infection by preventing the SARS-CoV-2 spike glycoprotein’s association with angiotensin-converting enzyme (ACE2). Complexes with the wild-type, B.1.1.7 Alpha, and B.1.427/429 Epsilon SARS-CoV-2 variants were used as positive controls, while complexes with the B.1.351 Beta, P.1 Gamma, B.1.617.2 Delta, B.1.617.1 Kappa, BA.1 Omicron, and the newest JN.1 Omicron variants were used as decoys. Three essentially different algorithms were employed: forced placement based on a template, followed by two steps of extended molecular dynamics simulations; protein–protein docking utilizing PIPER (an FFT-based method extended for use with pairwise interaction potentials); and the AlphaFold 3.0 model for complex structure prediction. Homology modeling was used to assess the 3D structure of the newly emerged JN.1 Omicron subvariant, whose crystallographic structure is not yet available in the Protein Database. After a careful comparison of these three approaches, we were able to identify the pros and cons of each method. Protein–protein docking yielded two false-positive results, while manual placement reinforced by molecular dynamics produced one false positive and one false negative. In contrast, AlphaFold resulted in only one doubtful result and a higher overall accuracy-to-time ratio. The reasons for inaccuracies and potential pitfalls of various approaches are carefully explained. In addition to a comparative analysis of methods, some mechanisms of immune escape are elucidated herein. This provides a critical foundation for improving the predictive accuracy of vaccine efficacy against new viral subvariants, introducing accurate methodologies, and pinpointing potential challenges.more » « less
An official website of the United States government
