This article presents a new method to solve a dynamic sensor fusion problem. We consider a large number of remote sensors which measure a common Gauss–Markov process. Each sensor encodes and transmits its measurement to a data fusion center through a resource restricted communication network. The communication cost incurred by a given sensor is quantified as the expected bitrate from the sensor to the fusion center. We propose an approach that attempts to minimize a weighted sum of these communication costs subject to a constraint on the state estimation error at the fusion center. We formulate the problem as a difference‐of‐convex program and apply the convex‐concave procedure (CCP) to obtain a heuristic solution. We consider a 1D heat transfer model and a model for 2D target tracking by a drone swarm for numerical studies. Through these simulations, we observe that our proposed approach has a tendency to assign zero data rate to unnecessary sensors indicating that our approach is sparsity‐promoting, and an effective sensor selection heuristic.
more » « less- PAR ID:
- 10443449
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal of Robust and Nonlinear Control
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 1049-8923
- Page Range / eLocation ID:
- p. 237-263
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This article presents a new method to solve a dynamic sensor fusion problem. We consider a large number of remote sensors which measure a common Gauss–Markov process. Each sensor encodes and transmits its measurement to a data fusion center through a resource restricted communication network. The communication cost incurred by a given sensor is quantified as the expected bitrate from the sensor to the fusion center. We propose an approach that attempts to minimize a weighted sum of these communication costs subject to a constraint on the state estimation error at the fusion center. We formulate the problem as a difference-of-convex program and apply the convex-concave procedure (CCP) to obtain a heuristic solution. We consider a 1D heat transfer model and a model for 2D target tracking by a drone swarm for numerical studies. Through these simulations, we observe that our proposed approach has a tendency to assign zero data rate to unnecessary sensors indicating that our approach is sparsity-promoting, and an effective sensor selection heuristic.more » « less
-
We consider a dynamic sensor fusion problem where a large number of remote sensors observe a common Gauss-Markov process and the observations are transmitted to a fusion center over a resource constrained communication network. The design objective is to allocate an appropriate data rate to each sensor in such a way that the total data traffic to the fusion center is minimized, subject to a constraint on the fusion center's state estimation error covariance. We show that the problem can be formulated as a difference-of-convex program, to which we apply the convex-concave procedure (CCP) and the alternating direction method of multiplier (ADMM). Through a numerical study on a truss bridge sensing system, we observe that our algorithm tends to allocate zero data rate to unneeded sensors, implying that the proposed method is an effective heuristic for sensor selection.more » « less
-
We consider a centralized detection problem where sensors experience noisy measurements and intermittent connectivity to a centralized fusion center. The sensors may collaborate locally within predefined sensor clusters and fuse their noisy sensor data to reach a common local estimate of the detected event in each cluster. The connectivity of each sensor cluster is intermittent and depends on the available communication opportunities of the sensors to the fusion center. Upon receiving the estimates from all the connected sensor clusters the fusion center fuses the received estimates to make a final determination regarding the occurrence of the event across the deployment area. We refer to this hybrid communication scheme as a cloud-cluster architecture. We propose a method for optimizing the decision rule for each cluster and analyzing the expected detection performance resulting from our hybrid scheme. Our method is tractable and addresses the high computational complexity caused by heterogeneous sensors’ and clusters’ detection quality, heterogeneity in their communication opportunities, and nonconvexity of the loss function. Our analysis shows that clustering the sensors provides resilience to noise in the case of low sensor communication probability with the cloud. For larger clusters, a steep improvement in detection performance is possible even for a low communication probability by using our cloud-cluster architecture.more » « less
-
null (Ed.)Quickest change detection in a sensor network is considered where each sensor observes a sequence of random variables and transmits its local information on the observations to a fusion center. At an unknown point in time, the distribution of the observations at all sensors changes. The objective is to detect the change in distribution as soon as possible, subject to a false alarm constraint. We consider minimax formulations for this problem and propose a new approach where transmissions are ordered and halted when sufficient information is accumulated at the fusion center. We show that the proposed approach can achieve the optimal performance equivalent to the centralized cumulative sum (CUSUM) algorithm while requiring fewer sensor transmissions. Numerical results for a shift in mean of independent and identically distributed Gaussian observations show significant communication savings for the case where the change seldom occurs which is frequently true in many important applications.more » « less
-
In large-scale wireless sensor networks, sensor-processor elements (nodes) are densely deployed to monitor the environment; consequently, their observations form a random field that is highly correlated in space.We consider a fusion sensor-network architecture where, due to the bandwidth and energy constraints, the nodes transmit quantized data to a fusion center. The fusion center provides feedback by broadcasting summary information to the nodes. In addition to saving energy, this feedback ensures reliability and robustness to node and fusion-center failures. We assume that the sensor observations follow a linear-regression model with known spatial covariances between any two locations within a region of interest. We propose a Bayesian framework for adaptive quantization, fusion-center feedback, and estimation of the random field and its parameters. We also derive a simple suboptimal scheme for estimating the unknown parameters, apply our estimation approach to the no-feedback scenario, discuss field prediction at arbitrary locations within the region of interest, and present numerical examples demonstrating the performance of the proposed methods.more » « less