skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Internal control of brain networks via sparse feedback
Abstract The human brain is a complex system whose function depends on interactions between neurons and their ensembles across scales of organization. These interactions are restricted by anatomical and energetic constraints, and facilitate information processing and integration in response to cognitive demands. In this work, we considered the brain as a closed loop dynamic system under sparse feedback control. This controller design considered simultaneously control performance and feedback (communication) cost. As proof of principle, we applied this framework to structural and functional brain networks. Under high feedback cost only a small number of highly connected network nodes were controlled, which suggests that a small subset of brain regions may play a central role in the control of neural circuits, through a trade‐off between performance and communication cost.  more » « less
Award ID(s):
2207733 1940096 1938914 2207699
PAR ID:
10443460
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
69
Issue:
4
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we study an LQG control system where one of two feedback channels is discrete and incurs a communication cost. We assume that a decoder (co-located with the controller) can make noiseless measurements of a subset of the state vector (referred to as side information) meanwhile a remote encoder (co-located with a sensor) can make arbitrary measurements of the entire state vector, but must convey its measurements to the decoder over a noiseless binary channel. Use of the channel incurs a communication cost, quantified as the time-averaged expected length of prefix-free binary codeword. We study the tradeoff between the communication cost and control performance. The formulation motivates a constrained directed information minimization problem, which can be solved via convex optimization. Using the optimization, we propose a quantizer design and a subsequent achievability result. 
    more » « less
  2. ABSTRACT Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) – systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers – and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers. 
    more » « less
  3. We study the performance of a decentralized integral control scheme for joint power grid frequency regulation and economic dispatch. We show that by properly designing the controller gains, after a power flow perturbation, the control achieves near-optimal economic dispatch while recovering the nominal frequency, without requiring any communication. We quantify the gap between the controllable power generation cost under the decentralized control scheme and the optimal cost, based on the DC power flow model. Moreover, we study the tradeoff between the cost and the convergence time, by adjusting parameters of the control scheme. Communication between generators reduces the convergence time. We identify key communication links whose failures have more significant impacts on the performance of a distributed power grid control scheme that requires information exchange between neighbors. 
    more » « less
  4. We study the performance of a decentralized inte- gral control scheme for joint power grid frequency regulation and economic dispatch. We show that by properly designing the controller gains, after a power flow perturbation, the control achieves near-optimal economic dispatch while recovering the nominal frequency, without requiring any communication. We quantify the gap between the controllable power generation cost under the decentralized control scheme and the optimal cost, based on the DC power flow model. Moreover, we study the tradeoff between the cost and the convergence time, by adjusting parameters of the control scheme. Communication between generators reduces the convergence time. We identify key communication links whose failures have more significant impacts on the performance of a distributed power grid control scheme that requires information exchange between neighbors. 
    more » « less
  5. The development of lithium-ion battery technology has ensured that battery thermal management systems are an essential component of the battery pack for next-generation energy storage systems. Using dielectric immersion cooling, researchers have demonstrated the ability to attain high heat transfer rates due to the direct contact between cells and the coolant. However, feedback control has not been widely applied to immersion cooling schemes. Furthermore, current research has not considered battery pack plant design when optimizing feedback control. Uncertainties are inherent in the cooling equipment, resulting in temperature and flow rate fluctuations. Hence, it is crucial to systematically consider these uncertainties during cooling system design to improve the performance and reliability of the battery pack. To fill this gap, we established a reliability-based control co-design optimization framework using machine learning for immersion cooled battery packs. We first developed an experimental setup for 21700 battery immersion cooling, and the experiment data were used to build a high-fidelity multiphysics finite element model. The model can precisely represent the electrical and thermal profile of the battery. We then developed surrogate models based on the finite element simulations in order to reduce computational cost. The reliability-based control co-design optimization was employed to find the best plant and control design for the cooling system, in which an outer optimization loop minimized the cooling system cost while an inner loop ensured battery pack reliability. Finally, an optimal cooling system design was obtained and validated, which showed a 90% saving in cooling system energy consumption. 
    more » « less