Abstract Elevated seismic noise for moderate‐size earthquakes recorded at teleseismic distances has limited our ability to see their complexity. We develop a machine‐learning‐based algorithm to separate noise and earthquake signals that overlap in frequency. The multi‐task encoder‐decoder model is built around a kernel pre‐trained on local (e.g., short distances) earthquake data (Yin et al., 2022,https://doi.org/10.1093/gji/ggac290) and is modified by continued learning with high‐quality teleseismic data. We denoise teleseismic P waves of deep Mw5.0+ earthquakes and use the clean P waves to estimate source characteristics with reduced uncertainties of these understudied earthquakes. We find a scaling of moment and duration to beM0 ≃ τ4, and a resulting strong scaling of stress drop and radiated energy with magnitude ( and ). The median radiation efficiency is 5%, a low value compared to crustal earthquakes. Overall, we show that deep earthquakes have weak rupture directivity and few subevents, suggesting a simple model of a circular crack with radial rupture propagation is appropriate. When accounting for their respective scaling with earthquake size, we find no systematic depth variations of duration, stress drop, or radiated energy within the 100–700 km depth range. Our study supports the findings of Poli and Prieto (2016,https://doi.org/10.1002/2016jb013521) with a doubled amount of earthquakes investigated and with earthquakes of lower magnitudes.
more »
« less
Identification of Low‐Frequency Earthquakes on the San Andreas Fault With Deep Learning
Abstract Low‐frequency earthquakes are a seismic manifestation of slow fault slip. Their emergent onsets, low amplitudes, and unique frequency characteristics make these events difficult to detect in continuous seismic data. Here, we train a convolutional neural network to detect low‐frequency earthquakes near Parkfield, CA using the catalog of Shelly (2017),https://doi.org/10.1002/2017jb014047as training data. We explore how varying model size and targets influence the performance of the resulting network. Our preferred network has a peak accuracy of 85% and can reliably pick low‐frequency earthquake (LFE) S‐wave arrival times on single station records. We demonstrate the abilities of the network using data from permanent and temporary stations near Parkfield, and show that it detects new LFEs that are not part of the Shelly (2017),https://doi.org/10.1002/2017jb014047catalog. Overall, machine‐learning approaches show great promise for identifying additional low‐frequency earthquake sources. The technique is fast, generalizable, and does not require sources to repeat.
more »
« less
- Award ID(s):
- 1848302
- PAR ID:
- 10443478
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 13
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze nearest‐neighbor proximities of earthquakes in California based on the joint distribution (T,R) of rescaled timeTand rescaled distanceRbetween pairs of earthquakes (Zaliapin & Ben‐Zion, 2013a,https://doi.org/10.1002/jgrb.50179), using seismic catalogs from several regions and several catalogs for the San Jacinto Fault Zone (SJFZ). The study aims to identify informative modes in nearest‐neighbor diagrams beyond the general background and clustered modes, and to assess seismic catalogs derived by different methods. The results show that earthquake clusters with large and small‐to‐medium mainshocks have approximately diagonal and horizontal (T,R) distributions of the clustered mode, respectively, reflecting different triggering distances of mainshocks. Earthquakes in the creeping section of San Andreas Fault have a distinct “repeaters mode” characterized by very large rescaled timesTand very small rescaled distancesR, due to nearly identical locations of repeating events. Induced seismicity in the Geysers and Coso geothermal fields follow mostly the background mode, but with larger rescaled timesTand smaller rescaled distancesRcompared to tectonic background seismicity. We also document differences in (T,R) distributions of catalogs constructed by different techniques (analyst‐picks, template‐matching and deep‐learning) for the SJFZ, and detect a mode with very largeRand smallTin the template‐matching and deep‐learning based catalogs. This mode may reflect dynamic triggering by passing waves and/or catalog artifacts.more » « less
-
Abstract We compared the performance of DREAM3D simulations in reproducing the long‐term radiation belt dynamics observed by Van Allen Probes over the entire year of 2017 with various boundary conditions (BCs) and model inputs. Specifically, we investigated the effects of three different outer boundary conditions, two different low‐energy boundary conditions for seed electrons, four different radial diffusion (RD) coefficients (DLL), four hiss wave models, and two chorus wave models from the literature. Using the outer boundary condition driven by GOES data, our benchmark simulation generally well reproduces the observed radiation belt dynamics insideL* = 6, with a better model performance at lowerμthan higherμ, whereμis the first adiabatic invariant. By varying the boundary conditions and inputs, we find that: (a) The data‐driven outer boundary condition is critical to the model performance, while adding in the data‐driven seed population doesn't further improve the performance. (b) The model shows comparable performance withDLLfrom Brautigam and Albert (2000,https://doi.org/10.1029/1999ja900344), Ozeke et al. (2014,https://doi.org/10.1002/2013ja019204), and Liu et al. (2016,https://doi.org/10.1002/2015gl067398), while withDLLfrom Ali et al. (2016,https://doi.org/10.1002/2016ja023002) the model shows less RD compared to data. (c) The model performance is similar with data‐based hiss models, but the results show faster loss is still needed inside the plasmasphere. (d) The model performs similarly with the two different chorus models, but better capturing the electron enhancement at higherμusing the Wang et al. (2019,https://doi.org/10.1029/2018ja026183) model due to its stronger wave power, since local heating for higher energy electrons is under‐reproduced in the current model.more » « less
-
Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission.more » « less
-
Abstract The polarFregion ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811) showed that the high‐latitudeFregion ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)Fregion exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter.more » « less